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“Is everybody in?
Is everybody in?
Is everybody in?
The ceremony is about to begin ... ‘

Jim Morrison
An American Prayer, Awake
1978



General Introduction

1.1 Wet, Dry or... something else?!

Fluid administration has an important place in the everyday practice of each
anesthetist caring for patients undergoing surgery. Many issues of fluid
therapy, however, remain unresolved even after at least 5 decades of
research filled with opposing views, evolving physiologic insights®3, furious
debates ?, ... and even research fraud °...

Therefore, it may be useful to start with the basics when studying
perioperative fluid therapy. Recently, the goal of IV fluid administration was
defined as:

‘.. To restore and maintain tissue fluid and electrolyte homeostasis and
central euvolemia, while avoiding salt and water excess. This will in turn
facilitate tissue oxygen delivery without causing harm, ...". °

Although somewhat vague, this definition has the merit that it incorporates
the origins of the raging debates, and that it emphasizes the importance of
perioperative hemodynamic and fluid management of patients. Trying to
compensate for fluid deficits and ongoing fluid and blood losses is not
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straightforward. Inadequate use of fluid therapy may itself cause morbidity,
which may be related to a less-than-optimal macro-hemodynamic result, but
also, to endocrine, acid-base, microcirculatory or toxicological effects. These
potential adverse effects are the reason for ongoing controversies concerning
the optimal composition of the fluids used (crystalloids vs colloids, saline
based vs balanced fluids, etc.) and the optimal amount and timing of fluids to
be administered. We should bear in mind that none of these aspects can be
seen isolated from each other.

Concerning the macrohemodynamic effect of fluid loading, two schools of
thought appeared around the beginning of the millennium and dominated
the perioperative fluid management debate: liberal vs restrictive fluid
therapy.

The first approach goes back to the seminal observation of Shoemaker et al
showing that patients surviving shock” or major surgery® had higher, even
supra-normal values of Cardiac Output (CO) and Oxygen Delivery (DO>) in
comparison with non-survivors. In 1988, the same group published a first trial
in patients undergoing high risk surgery, showing superiority of striving supra-
normal cardiac output and DO2 values, with a dedicated hemodynamic
protocol based on fluid and pharmacological support.® Later studies,
including more patients and using different study designs showed conflicting
results, weakening this early enthusiasm.°

The restrictive fluid approach stems from the concerns of fluid excess.
Researchers pointed out that overzealous administration of fluids may result
in cardiac dysfunction, pulmonary complications, kidney injury, abdominal
compartment syndrome, gastro-intestinal dysfunction, edema, impaired
wound healing and coagulation problems.!! A recent meta-analysis of the
randomized controlled trials conducted in the last 20 years, comparing
restricted vs liberal fixed-dose fluid regimens failed to show an overall benefit
of either of the two approaches on mortality and on overall morbidity. Liberal
fixed dose fluid regimens, however, were associated with less renal
complications.? Limitations of this meta-analysis, however, are the difficulty
of comparing the control groups and the small size of most included studies.
In addition, one study consisted of more than half of the pooled patients in
this meta-analysis.?
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In his 2006 editorial, Bellamy tried to reconcile these apparent opposing
views. He defined a U-shaped curve describing an increased morbidity in both
the liberal and the restrictive fluid therapy tail (See figure 1.1).1
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Figure 1.1: Curve A represents the hypothesized line of the risk. Broken line B represents
division between patient groups in a 'wet vs dry' study. Broken line C represents a division
between patient and groups in an 'optimized vs non-optimized' study.!

Although hypothetical at the time, this curve was shown to be a realistic
representation. In their analysis of a database containing more than 90000
patients, Shin et al found that this curve could be reproduced for 30-day
mortality, postoperative respiratory complication, postoperative acute
kidney injury, length of stay and total hospital costs.'

To find this optimal fluid load Bellamy urged for more reliable “...physiological
measurements tailored to the individual patient...”.

1.2 Fluid Responsiveness

1.2.1 General definition and physiology

The intended effect of administering fluid to a patient in the perioperative
period is to increase CO. Patients that have an increase in CO after fluid
loading are defined as fluid responsive or as fluid responders (general
definition).
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In 1895" Otto Frank, described the phenomenon that a cardiac muscle of a
frog is able to generate more force when it is stretched before activation.’ In
1914 Ernest Starling expanded this finding and described the non-linear
relationship between venous return/filling of the ventricle and stroke
volume.'® Ever since, the exact molecular mechanisms underlying this
intrinsic property of the heart muscle have been further unraveled.’2°

Two portions can be discerned on this curve. Increasing preload in an empty
heart will rapidly increase stroke volume up until a point where further
increasing venous preload will not result in a sustained increase in cardiac
output. For clinical purposes it is useful to split the curve in a steep raising
part and a plateau part, a fluid responsive and a non-fluid responsive part
respectively.

Other determinants of the heart performance, like afterload and contractility,
also have an impact on this relation. The interplay between these various
determinants explains why the Frank-Starling curve differs between patients
and can even change over time in the same patient.

Besides the Frank-Starling approach, another framework explaining the
hemodynamic effects of filling was conceived in the 1950’s. This alternative
view shifted the emphasis from the concept of the heart as a pump
generating arterial forward flow, to the concept where the heart is viewed as
an accommodator of venous return flow. In his influential writings, Arthur
Guyton placed the venous vasculature and venous return at the center place
of hemodynamics.

* See Zimmer for a historical overview of the seminal research conducted by Elias Cyon,
Joseph Coats and Henry P Bowditch at Carl Ludwig’s Physiological Institute at Leipzig in 1866.
Otto Frank worked in this institute in 1892-1893 before moving to Munich where he
continued his studies. Reference: Who Discovered the Frank-Starling Mechanism? Zimmer
HG News Physiol Sci 2002; 17: 181-184.

For a full historical overview of the Frank-Starling Law see: Historical perspective on heart
function: The Frank-Starling Law. Sequeira V, van der Velden J Biophys Rev 2015; 7: 421-447
and: Ernest Henry Starling, His Predecessors, and the ‘Law of Heart’ Katz AM Circulation
2002; 106(23): 2986-2992.
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Figure 1.2: Cardiac function curve showing the Frank-Starling relation which is a curvilinear relation

between preload and Cardiac Output. The dashed line partitions the plot into two portions: on the left,

the ascending portion of the curve. On the right the plateau portion of the curve. The shift from A to B
represents the effect of administering a fluid bolus in a fluid responder.”
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Figure 1.3: The venous return curve or vascular function curve showing the relation between CVP and
the venous return. The curve consists of two segments: a constant maximal venous return with a CVP <0
mm Hg and a linear decline. The intercept of the curve with the x-axis, the point where venous return
becomes 0, signifies the mean systemic pressure (Pms). The absolute slope of this segment is the
reciprocal of the venous resistance (RVen). The shift to the left of the venous return shows the change
induced by hypovolemia. If CVP and Rven were kept constant than this degree of hypovolemia would
induce a change in venous return, equal to shift of point ‘A’ to point ‘B’.

* An Alternative representation of the Frank-Starling relation is the ‘Pump Function Graph’
reference: Snapshots of Hemodynamics. 2"d edition Westerhof, Stergiopulos and Noble.
Chpt 14 p 87-95. ISBN 978-1-4419-6362-8 Springer 2010
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Although still refined?** and debated®?®, roughly 5 main principles
constitute this theory:

1. Venous return determines the Cardiac Output. In the words of Starling: “..
The output of the heart is equal to and determined by the amount of blood
flowing into the heart, and may be increased or diminished within very wide
limits according to the inflow...”*®

2. The driving force of the venous return is the Pms”. This is the upstream
venous pressure. It can be conceptualized as the pressure, at which all the
elastic compartments of the venous system would equilibrate when flow
stops.2t"23 "

3. The Pms is regulated through the stressed volume. The pressure in the
veins is determined by the volume of blood that resides in these vessels and
their elastic properties. The cross-section view of an empty vein can be seen
as a flat ellipse. Filling up the vessel will change this cross section view up
until it is a circle, with constant circumference. The resulting pressure will be
virtually 0. Further filling will result in an increase in circumference of the
circle and hence a stretch is forced upon the vessel wall with a concomitant
raise in pressure. The volume of blood residing in a vessel up until the
pressure starts to raise is called the unstressed volume. The extra volume
responsible for the development of wall tension, is called the stressed
volume.?” Pms can be regulated through a change in the stress / unstressed
volume ratio (e.g.: change in vascular tone). 2728 ¥

* In this thesis the term mean systemic pressure (Pms) will be used. In the literature
however, two variants can be found. ‘Mean circulatory filling pressure’ is the (venous)
pressure at zero flow, in line with the above-mentioned definition. ‘Mean systemic filling
pressure’ is the same when excluding the blood and the compliances of the heart and the
pulmonary circulation. These two values slightly differ as for the former, there can be an
equilibration/shift between the pulmonary and the systemic circulation. This distinction
might become important when choosing a method to measure these pressures.2?

T There are two different interpretations of the Pms. Proponents like Simon Gelman?2t
interpret it as a pivot pressure, physically located in the venous system. Others like Sheldon
Magder38 and Soren Sondergaard3’ explain it as an averaged pressure weighted by vessel
compliances making it a virtual pressure without a specific location.

* For an alternative view on the function of Pms and the place of the stressed volume as
driving forces of venous return see Brengelmann2>2632  Starting from the first law of
Newton (conservation of energy), he argues that the stressed volume cannot be the driving
force of venous return. As the energy stored in the stretch of a vessel wall can only be
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4. Right atrium pressure (Pra) is the back pressure of the venous return. The
low-pressure downstream part of the venous return is the right atrium.
Increasing the Pra decreases the pressure gradient over the venous
vasculature. Consequently, this must affect the resultant flow.2*7! In clinical
practice, CVP is considered interchangeable with Pra.

5. Taken together, venous return can be calculated as: VR = (Pms -
Pra)/Rven’. (Rven = resistance of the venous vasculature.)

The impact of changing these determinants is schematized in the venous
return or vascular function curve. (See figure 1.3)

Confronting these two views bears the risk of getting stuck in a chicken and
egg problem. Is it the venous return that is the main driver for the CO? “..The
heart can pump only as much as it receives...”.” Or is it the heart that provides
the energy to fill the venous vasculature and maintain the Pms?%3%33 / The
heart can only receive what it pumps. ..." . Or both?** Both functions seem to
interact with Ra as the negative feedback loop. That is probably the reason
why the Guyton diagram® (See figure 1.4) is mostly used in the literature, as
it elegantly combines both the cardiac function curve and the venous return
CUrVG.23'36_38

released when it changes its volume. He goes on with a mathematical multicompartment
model showing how intravascular volume redistributes among the different compliant
compartments in accordance with their flow-dependent distending pressures irrespective of
Pms. In the literature a vivid discussion on Brengelmann’s proposed views can be
found_24,152—155 )

" There has been some discussion around this formula. First Levy!56 pointed out that, based
on the study designs it was based on, that not all the determinants of the formula are
independent variables. This argument is also used by Bregelmann.32 Especially Ra can be
seen as a dependent predictor as it both influences flow and is influenced by the flow. See:
the Guyton diagram.35

" This is a quote from CJ Wiggers from his foreword in: Venous Return. By GA Brecher, NY,
Grune & Stratton,1956. ... It is axiomatic that the heart can pump only as much blood as it
receives. Indeed, the volume of blood returned to the heart is the basic determinant of
cardiac output. Since the latter varies enormously under ordinary conditions of daily activity,
the mechanisms that facilitate venous return have been the subject of discussion for
centuries.”
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Figure 1.4:The Guyton diagram, combining the venous return curve with the cardiac function curve.
The effect of fluid loading is shown as the shift to the right of the venous curve and the resulting shift of
point A to point B. It shows how the resulting CVP, eventually is the result of its opposing effect on both

equilibrated flows.

1.2.2 A formal definition for research

To apply the concept of the Guyton diagram into applied research, a
quantifiable variable needed to be defined.?® In 1998, Tavernier et al. defined
fluid responders, for the first time, as patients in whom the cardiac output
increased by at least 15% after a fluid challenge of 500mL. (specific
definition)

This new definition has some important implications:

- it transforms the outcome of fluid loading from a continuous to a binary
outcome. Dichotomizing the outcome made it easier to perform and to
interpret studies that predict fluid responsiveness.

- it makes it a more uniform concept that enables to compare studies more
easily. Although this formal definition is widely used in the literature, there
still is some heterogeneity. A meta-analysis of Marik et al. showed that some
studies used different amounts of fluids (e.g., 10 or 20 mL/BMI or a fixed
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amount of 250 mL) and a minority using different cut-off values for CO-
changes (e.g., 10 or 25%).%°

Other sources of heterogeneity in the fluid responsiveness literature are on
the one hand, the different types of fluids used, each with their own
pharmacokinetic profile and, on the other hand, the different methods
available to measure the CO changes, each with their specific measurement
errors.

1.2.3 What is not in the definition of fluid responsiveness

Although the concept of fluid responsiveness seems straightforward, there
still is some misunderstanding among researchers and clinical practitioners.
The most important issue is how a fluid responsive patient should be
managed. Although it has been pointed out repeatedly in several
publications**™*, being fluid responsive is sometimes wrongly interpreted as
diagnosis of hypovolemia or an absolute indication for administering extra
fluids.

Being fluid responsive is a normal physiologic condition. Although humans
have much better developed homeostatic defense mechanisms to deal with
hypovolemia, this preload reserve is one of the few mechanisms against fluid
overload.”

On the other hand, when patients are no longer fluid responsive, they
become vulnerable to fluid overload and logically, further administration of
fluids is doomed to cause harm.

Fluid overload and its resulting increased capillary hydrostatic pressure make
tissues prone for extravasation promoting capillary leak syndromes (see
figure 1.5).%

* Recently, the concept of ‘Fluid tolerance’ was proposed.'>” In this first ‘position paper’ fluid
tolerance was defined as:’ ... The degree to which a patient can tolerate administration of
fluids without causation of organ dysfunction. ...". Although appealing, this first (vague)
version of the concept needs more elaboration before it can be studied as a clinical entity.158
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Figure 1.5:The cardiac function curve (red) with superimposed Marik-Phillips curve (purple)”.
Relation of preload with Cardiac CO and Extra Vascular Lung Water (EVLW). As patients
become less fluid responsive with incremental preload, EVLW (and tissue edema) increases
significantly. In patients with increased vascular permeability, due to systemic inflammation,

sepsis etc., the Marik-Phillips curve shifts to the left. **

Furthermore, perioperative endothelial barrier damage may further
exacerbate the detrimental effect of fluid overload.

Several molecular pathways responsible for this effect on endothelial
permeability have been unraveled:

- Increased cardiac filling pressures trigger the release of natriuretic peptides.
These molecules have shown to cleave the glycocalyx, the most important
layer responsible to control the endothelial permeability.?*

* The Marik-Phillips curve describes the relationship between preload and the accumulation
of extra vascular lung water (EVLW), indicating the onset of edema formation during fluid
loading. This curve, which was introduced in 2014 in an editorial by Marik et Lemson 44, is
superimposed on the Frank Starling cardiac function curve. While not formally investigated
by these authors, the claim that the elevation in EVLW coincides with the initiation of the
plateau phase of the cardiac function curve appears to be rooted in the research of Aman et
al. (Crit Care Med 2012; 40: 793-799). However, it’s worth noting that the assertion linking
this phenomenon to increased cardiac filling pressure and transmitted hydrostatic pressures
lacks support from this work.
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- Direct tissue injury and ischemia/reperfusion related to surgery result in a
local release of DAMP’s (damage-associated molecular patterns, e.g., HMGB-
1). This family of molecules has a direct effect on the glycocalyx and
neutrophil activation. Further activation of the systemic inflammatory
response results in the release of multiple cytokines and molecules, most of
them causing increased permeability of the endothelium.3#647

1.3 Predicting Fluid responsiveness

It has long been known that clinicians fail to predict fluid responsiveness.
Meta-analyses looking into fluid responsiveness have shown that when left
to the discretion of the attending anesthetist or critical care physician, about
50% of fluid challenges were given when the (hypotensive) patient, in fact,
was a non-responder.’%*8 This makes that a patient is all too often exposed to
a potential harmful fluid management. Being able to predict fluid
responsiveness before effectively administering fluids is fully in line with
Bellamy’s call for ‘.. physiological measurements tailored to the individual
patient...”.

1.4. Static filling parameters to predict fluid
responsiveness

Static filling parameters are variables that are measured at one time point.
The most exemplary and historically most used static hemodynamic
parameter is the central venous pressure (CVP). CVP is the pressure
measured at superior caval vein or the right atrium at end-expiration. The
rationale for the use of CVP to assess volume status comes from the premise
that it is a good measure for intravascular volume or preload. Old guidelines
defined specific target CVP values* ™, or used changes in CVP to guide fluid
management.®° '

* In the 2012 Surviving Sepsis Guidelines initial hemodynamic goals were defined as: (1) CVP

8-12 mm Hg, (2) MAP >= 65 mmHg, (3) Urine Output >= 0.5 mL .kg-1.h-1 and (4) S.,02 70%

or S,02 65%. Since the subsequent 2014 update (Rhodes et al Intensive Care Medicine 2017;

43:304-377) the use of CVP alone was no longer recommended.

" In this article the ‘5-2’-rule was recommended to monitor the effect of a fluid challenge:
Fluid challenge

Observe CVP for 10 min <8 cm H.0 200 ml x 10 min

<14 cm H0 100 ml x 10 min

> 14 cm H.0 50 ml x 10 min
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However, Marik et al showed in 2008, that both a specific CVP value or the
change in CVP after a fluid challenge, are poor predictors for fluid
responsiveness.® In a subsequent update of this meta-analysis, they
calculated the ROCAUC of CVP to be 0.56 (0.54-0.58). The overall correlation
between baseline CVP and changes Stroke Volume/Cardiac Index was 0.18
(0.1-0.25).8

Several reasons have been proposed to explain these poor predictive
properties?*3637;

- The use of fluid filled catheters to measure CVP warrants to be zeroed and
the transducers need to be placed at the correct level. Incorrect placement
of the transducer can cause wrong measurement and may be the cause of
heterogeneity in some studies. Two studies, in critical care nurses®? and
perioperative health care providers®3, found this critique to apply in clinical
practice. These studies both found considerable variability in placement of
the transducer.

- The CVP wave form consists of different waves and descends. The pressure
measured at the base of the c-wave is the most appropriate value to assess
the loading condition of the right ventricle. A pressure value taken at another
moment in the cardiac cycle may yield very different values.

- To fully assess the transmural pressure, the CVP relative to the surrounding
pressure, the measurement needs to be taken at the end of the expiration.
Rogers et al. concluded in their study, however, that CVP-values on a
commercial monitor are interchangeable with CVP-values timed at the base
of the c-wave at expiration (bias -0.87 mm Hg and precision 1.05 mm Hg).>*

Although these considerations and pitfalls may partially explain why CVP is
such a poor predictor, the main reason is that one single pressure
measurement cannot be used to assess the intra and interindividual
variability of the Frank Starling/Venous return curve, which is influenced by
factors like the compliance of the ventricle, contractility, Pms etc.

The same conclusion can be drawn from other static filling parameters like
pulmonary artery wedge pressure, end diastolic Area/Volume.>®

During infusion 0-9 min > 5 cm raise STOP
Following infusion > 2 cm <5 cm raise Wait 10 min
> 2 cmraise Wait STOP
< 2 cm raise Continue infusion

An alternative for the use of the change in CVP following infusion, the ‘7-3 rule’ was also
provided, if Pulmonary Artery Wedge Pressure was used instead.
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1.5 Dynamic filling parameters to predict fluid
responsiveness

If one measurement cannot determine the individual Guyton-diagram, then
multiple wisely chosen measurements, might do the job. It has long been
known that there is a heart-lung interaction, that respiration has an impact
on cardiac function. It turned out, that mechanical ventilation provides a
good method, to change loading conditions of the heart. Measuring these
cyclic and regular changes provides the framework for a family of dynamic
filling parameters.

1.5.1 Physiology of the heart-lung interaction during
mechanical ventilation

The heart and the lungs are not only functionally connected, but they also
share the same anatomic location within the thorax. Ventilation and
respiration alter the intrathoracic pressure (ITP). This makes the heart a
‘pressure chamber in a pressure chamber’. Altering the ITP affects the
gradients between the heart and the extra-thoracic organs but does not
change the pressure gradients between the heart and the lung within the
thorax.

During full mechanical ventilation ITP increases during insufflation
proportional to the Tidal Volume®®. ITP normalizes during expiration. These
swings in ITP have a complex impact on the different determinants of the
cardiac function (see figure 1.6).4**’

CVP or the Pressure in the right atrium (Pra) is the back pressure of the
venous return to the right ventricle. Because Pms is located outside the
thorax changing the ITP will change the gradient with Pra. An increase in ITP
will result in a decrease in this gradient because it changes the transmural
pressure of Pra to the amount of Pra + effective pleural pressure (Ppl)’.
Changing the back pressure of the venous return can have an important effect
on the resulting right ventricular output.3%°8

The resultant impact of positive pressure ventilation is shown schematically
in figure 1.6 and figure 1.7.

* Provided that the pericardial pressure is negligible.



14 Chapter 1

Paivt
~ West Zones

Lung inflation:
Vascular resistance +
West Zones ~

Caval vein compression - L \D}
Abdominal recruitement +

Figure 1.6: Schematic representation of the ‘pressure chamber in pressure chamber’ concept
and the impact of positive pressure mechanical ventilation on the different determinants of
the cardiac function. Heart and lungs are depicted within the thoracic cage. Arrow A: right

ventricular preload, Arrow B: right ventricular afterload, Arrow C: left ventricular preload,
Arrow D: left ventricular afterload. ITP: Intrathoracic pressure Ppl: Pleural pressure. Yellow
arrows, the arrows crossing the thoracic cage (A-D), are subjected to the effect of changes in
transmural pressure due to elevated ITP (or Ppl). Insufflation (increased ITP) will result in
decreased venous return to the right ventricle and afterload reduction of the left ventricle.
White arrows, RV afterload (B) and LV preload (C) are located withing the thoracic cage.
Changes in pleural pressure will not result in changes in pressure gradients between the heart
and the lungs. The effect of mechanical ventilation on these determinants are mediated
through direct effects on the pulmonary circulation.
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Figure 1.7: Schematic representation of the effect of mechanical ventilation on the Guyton
diagram. The change of the transmural pressure, during inspiration, is depicted as a shift to
the right of the Frank-Starling. The shift from Ae (the working point of the patient during
expiration) to Ai (the working point at inspiration) is the effect of Mechanical Ventilation on
the venous return and CO.

Besides the direct effect of ITP changes some other effects have been
described:

- Diaphragm excursion can increase venous return by direct compression of
liver or increasing the abdominal pressure.>®

- Direct compression on the caval veins.°

As the left ventricle and the lungs are both located in the thorax, changing
the ITP, contrary to his right sided counterpart, will not affect the venous
return to the left ventricle. The effect of mechanical ventilation on left
ventricle venous return will be mediated through direct changes in the
pulmonary circulation. The insufflation of the lung results in increased
alveolar pressure that can compress alveolar vessels. Depending on the zone
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conditions of the lung this may result in a transient preload increase (Zone
West 3) or a decrease (Zone West 2).?

Likewise, because the lung and the right heart are both located within the
thoracic cavity, afterload of the right ventricle (the force resisting ventricular
ejection) is not directly affected by changes in ITP. However, the expansion of
the lungs and the stretch on its vasculature, directly alters the pulmonary
vascular resistance and elastance as well as pulmonary arterial pressures by
changing the distribution of the zones of West in the lung.52%

Increasing the ITP decreases the gradient between LV and the aorta. As a
result, positive pressure insufflation decreases left ventricular afterload.®>°

To makes things even more complex, additional principles involved during
mechanical ventilation need to be clarified:

1. Ventricular interdependence: Both sides of the heart share the septum and
reside in the constraints of the pericardial space. This not only makes the
influence of pathologies that increase the pericardial pressure (e.g.:
pericardial effusions) on the above mentioned more complicated, but it also
makes them dependent of each other. Increased or aberrant filling of one
ventricle directly impacts the diastolic function of the other ventricle.®”

2. Phase shift: Blood passing through the heart and the lungs is affected by
these different mechanisms at different moments. The effect of inspiratory
induced decrease in venous return and RV outflow causes a decrease in LV
filling only after its passage through the lungs. As the pulmonary transit time
is about 2 seconds, this usually coincides with the expiratory phase of the
respiratory cycle. This paradoxical effect (seeing the effect of inspiration, at
expiration) was already nicely shown in 1966 by Morgan et al.%® As such the
inspiratory decrease in afterload of the LV and the concomitant decrease in
RV output are disconnected and further accentuate the effect of mechanical
ventilation on Stroke Volume/Cardiac output.

1.5.2 Dynamic filling parameters

These cyclic effects of mechanical ventilation on CO, can be directly measured
or can be determined from an arterial pressure curve. There are, in general,
four families of dynamic filling parameters based on the heart-lung
interaction, described in the literature:
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Systolic Pressure Variation (SPV). SPV was first described by Coyle et al in
1983, as the range of systolic blood pressures during one mechanical
ventilation cycle.

SPV (mmHg) = SAP,qy — SAPpin

Perel et al further refined this by splitting SPV into 4Up and ADown. (See
figure 1.8) By using an apneic reference systolic pressure, they were able to
show that AUp correlates with the LV afterload reducing effect and ADown
correlates with the RV preload reducing effect.”

Pulse Pressure Ventilation (PPV). Because pulse pressure (PP = systolic
pressure — diastolic pressure) is proportional to the Stroke Volume, cyclic
changes in PP are preferred by some to assess fluid responsiveness. When
calculated as a percentual change, and with an arterial compliance assumed
to be constant, it should theoretically be equal to the percentual change of
stroke volume. The base formula® to calculate PPV is:

PPmax - PPmin
(PPmax +PPmin)/
2

PPV (%) = 100

Stroke Volume Variation (SVV). When beat-to-beat stroke volumes are
measured, the same formula can be applied to calculate the SVV.

SVmax - SVmin

SVV (%) = 100
( 0) (SVmax + 'S‘Vmin)/2

* Perel et al published the Respiratory Systolic Variation Test based on the Adown.1® The
test is a standard maneuver for applying incremental airway pressures during ventilation.
They used the calculated slope between minimal systolic pressures and airway pressures as a
measure to predict fluid responsiveness. Preisman et al found the optimal cut-off value to be
>0.51 mmHg/cm H0, with a ROCAUC of 0.96, and sensitivity and specificity of 0.93 and 0.89
respectively.>>

T Recently a new method to determine the cyclic variation in pulse pressure based on Fourier
analysis has been published.160.161
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Figure 1.8: Determination of Systolic Pressure Variation (SPV) and Pulse Pressure Variation (PPV) on an invasive arterial blood pressure curve
synchronized airway pressure profile. Left side: SPV: A: Maximal systolic pressure during a mechanical ventilation cycle, B: the apneic reference
systolic pressure taking before the beginning of insufflation, C: minimum systolic pressure. SPV = A-C, Aup = A-B and Adown=B-C. Right side: PPV:
identification of the maximum and minimum pulse pressure. PPV = 100* (PPmax-PPmin)/(PPmax+PPmin)/2
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There are different methods to determine beat-to-beat stroke volume and
SVV, that have been described and that are commercially available like
calibrated and non-calibrated arterial pulse contour analysis®, esophageal
doppler,”® echocardiography’® and the volume clamp technique.”?

Other surrogates for SVV can be derived from the photo-plethysmography
waveform. Two variants have been described APOP and PVI:

Variations in pulse oximetry plethysmography waveform amplitudes (APOP),
which uses the amplitude of the signal, measured at finger sensor.

Amp lmax - Amplmin

POP (%) = 100
( 0) (Amplmax + Amplmin)/z

Pleth Variability index (PVI). A commercially available variant is based on the
beat-to-beat variation in perfusion index (PI)", also based on this totally non-
invasive technology. They used a slightly different formula to calculate this
index.

PI — PL,;
PVI (%) = 100 _max =~ Tmin
PImax

* Perfusion index (Pl) is calculated as 100 %. AC stands for ‘Alternating Current’ and is the

pulsatile variation in light absorption measured at the PPG probe. This change in absorption
is mainly caused by the pulsatile arteries and their temporal change in blood volume
content. DC stands for ‘Direct Current’. DC corresponds to the non-pulsatile light absorption
from the other tissues, such as bones skin and soft tissues.
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1.5.3 First Results

1.5.3.1 Prediction properties

The most studied dynamic parameters are PPV and SVV. Meta-analyses
consistently show that these parameters, when used correctly, have excellent
prediction properties.’®’ (See table 1.1) The AUROC of PPV and SVV are
above 0.9 and 0.8 respectively. The difference between PPV and SVV was
statistically significant in the meta-analysis of Marik et al. The exact reason
for this difference is not known. However, different methods to determine
beat-to-beat stroke volumes, each with their own principles and their own
inherent measurement error, may yield different calculated values of SVV and
may be a source of heterogeneity.”*’® Invasive blood pressure measurement,
on the contrary, is probably less prone to measurement error.””

For both PPV and SVV it was shown that the optimal cutoff was about 12%.
This corresponds, for PPV with a sensitivity and specificity of 0.89 and 0.88
and diagnostic odds ratio of 59.86. This means that a patient with PPV > 12%
is about 60 times more likely to be a fluid responder than a non-responder.”

Laterin, 2011, an interesting alternative approach for assessing the predictive
properties of PPV was published by Cannesson et al. in a large multicenter
study. Instead of using 1 optimal cutoff point, which is customary when using
the classic ROC method, they introduced the ‘gray zone approach’. In a two-
step method they determined two cut-offs. The optimal threshold for
excluding fluid responsiveness and the optimal threshold for diagnosing fluid
responsiveness. Values between these two thresholds were considered
‘inconclusive’ and were defined as the ‘gray zone'. In their cohort they found
the optimal classic threshold to be 12%, in line with the previous studies. The
gray zone ranged from 9% to 13%.7° "

* Most publications studying the prediction of fluid responders use univariate prediction
models. Ikeda et al compared a model containing ventilator settings and right sided
hemodynamics with PPV in predicting fluid responsiveness with limited success.162 Other
researchers used multiple logistic regression build on PPV and other parameters measured
with the MostCare monitor (arterial elastance, cardiac cycle efficiency and the systolic-
dicrotic pressure difference.)163.164

" In this original study, about 24% (98/413) of the studied patients had a PPV value before
the fluid challenge in this gray zone.
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Two meta-analyses assessed the ability of PVI to predict fluid
responsiveness.”””’® The most recent one included 27 studies and found an
ROCAUC of 0.82 (0.79-0.85).” There was however a wide range of optimal
cut-offs. This higher heterogeneity is partly explained by the effect of
vasoactive medication like noradrenalin on the signal quality of the
photoplethysmogram.”®

1.5.3.2 Dynamic filling parameters in clinical pathways

Different studies have incorporated these dynamic filling parameters in flow
charts and clinical pathways for perioperative hemodynamic management.
Deng et al bundled 37 such studies in a recent meta-analysis.2°

They concluded that pathways solely based on dynamic filling parameters did
not significantly change various outcomes compared to the heterogenous
control group. Pathways incorporating dynamic parameters (like PPV and
SVV) in combination with cardiac output measurements, on the contrary,
differed significantly in terms of short-term mortality (OR: 0.45, 95% ClI
(0.24,0.85)), overall morbidity (OR: 0.41, 95% CI (0.28,0.58))", length of stay
in the ICU (MD=-0.77days, Cl (-1.07, -0.46)) and hospital stay (MD -1.18 days,
Cl (-1.90, -0.46)).

It should be noted however, that there are some considerations to be made
with this meta-analysis and that its results still need confirmation in large

* Specific complications were assessed as a secondary outcome:
For trials incorporating both dynamic filling parameters and cardiac output goals20:

OR 95% confidence interval

Cardiac complications:

Arrhythmia 0.58 0.37-0.92

Myocardial infarction 0.35 0.16-0.76

Heart/failure/cardiovascular dysfunction 0.31 0.14-0.67
Pulmonary Events:

ALI/ARDS 0.13 0.02-0.74

Pneumonia 0.4 0.24-0.65

Pulmonary embolism 0.31 0.03-3.04
Abdominal Events

Gastrointestinal bleeding 0.66 0.11-4.03

Gastrointestinal obstruction 0.83 0.24-2.79
Renal Events

Acute Kidney Injury 0.49 0.19-1.23

Renal failure with dialysis 0.87 0.32-2.39

In an older meta-analysis incorporating 14 studies also infectious complications were
included and found to be significant (OR: 0.45 95% (0.27 — 0.74)).165
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scale randomized controlled trials. The most important issues are power of
the studies and the heterogeneity of data.!

Although this meta-analysis incorporated 37 studies, pooling 2910 patients,
no formally power analyses were done. Unknown power can go both ways.
As some secondary outcomes and the analysis of studies incorporating only
dynamic filling parameters were done on a subset of the total dataset, it is
possible that an underlying effect is not detected due to lack of power. On
the other hand, effects found to be statistically significant in this meta-
analysis might be overestimated or wrongfully identified as a real underlying
effect.

A supplementary trial sequence analysis would have provided insight into
these issues.81%

Another concern in all meta-analyses looking into perioperative goal-directed
therapy is the heterogeneity of both the control groups and the different
definitions of outcomes between the different trials.®%3

1.5.4 Pre-requisites and applicability

So far, dynamic filling parameters like PPV and SVV, have been presented as
near perfect parameters for perioperative fluid management:

- Theyarereliable in predicting fluid responsiveness, due to the unique
interaction between mechanical ventilation and the beating heart to
assess the patients’ individual cardiac-venous return function.

- Mechanical ventilation turns out be a cyclic maneuver that is
perfectly reversible in the sense that no additional fluid is
administered. Therefore, the administration of excess fluids to non-
responders is minimized.

- These parameters can easily be calculated in an automatic and
continuous fashion, without any need for additional actions by the
anesthetist.

However, dynamic filling parameters are not a panacea for every patient.
Different restrictions for its correct use should be considered.®® As the
heart-lung interaction is the underlying principle for these parameters, the
restrictions can be largely divided into respiratory restrictions, cardiac
restrictions and restrictions based on their interaction. (See figure 1.9).
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Respiratory pre-requisites:

- Absence of spontaneous breathing. Any phenomenon that
interferes with the mechanical ventilation induced regular increases
in intrathoracic pressure, undermines the well-functioning of the
measured parameter. Because spontaneous physiologic breathing
decreases intrathoracic pressure and is slightly irregular, it was
always considered an exclusion criterion in the above-mentioned
studies. The same goes for intubated patients fighting the ventilator.
A few studies confirmed the poor prediction capabilities of PPV in
patients with spontaneous breathing. These studies were conducted
in intubated patients on pressure support®®®  in non-intubated
patients®® and in a mixed group of both.® *

- Tidal Volume > 8mL/kg.” The effect of full mechanical ventilation on
intrathoracic pressure is proportional to the tidal volume used in
patients with normal lung compliances.®””®® The use of lower tidal
volumes in these patients, logically leads to diminished intrathoracic
pressure swings and ultimately to lower PPV values.’* De Backer et
al. were the first to show in critically ill patients that a tidal volume of
at least 8 mL/kg was a pre-requisite for PPV to have good prediction
capabilities for fluid responsiveness.®? Ever since, several studies,
both in ARDS patients and non-ARDS patients, have confirmed the
finding that smaller tidal volumes not only lead to smaller cut-off
values for PPV, but also diminish the sensitivity and specificity of
these adjusted thresholds.>>” Different measures to correct for tidal
volume were proposed. Vistisen et al proposed, based on their
animal study, to index PPV by the tidal volume, because of their
consistent proportional relation in different volume states.*® Liu et al.
on the other hand, suggested to adjust PPV by changes in pleural
pressure specifically in patients with Acute Respiratory Distress
Syndrome.*®

* Another study by Grassi et al concluded that in intubated patients on pressure support,
PPV had excellent prediction capabilities. 166 There are however some serious methodologic
issues with this study, not in the least the strictly pressure-based definition used for fluid
responsiveness.

*In their study in postoperative cardiac patients Lansdorp et al found that a tidal volume of
>7mL/kg may be equally reliable.10 Although later studies confirmed the 8mL/kg instead of
the >7mL/kg criterium, some authors have used the findings of Lansdorp et al.11?
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Figure 1.9: Overview of the pre-requisites for the correct use of dynamic filling parameters. TV = Tidal Volume, HR = Heart rate, MVR =
Mechanical Ventilation Rate, RV = Right Ventricle

No spontaneous breathing

No abdominal hypertension

TV = 8ml/kg

Closed Chest

HR/MVR > 3.6 b/cycle

Sinus heart rhythm

No RV failure/ No
Pulmonary hypertension
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Cardiac

Closed chest conditions. Opening the thoracic cavity changes the
impact and the interplay between the mechanical ventilation and the
cardiac function, directly influencing the value and relevance of
PPV.% Several studies have shown that the loss of a closed thoracic
cavity like during thoracic and cardiac procedures, comes with poor
reliability of PPV and/or SVV to predict fluid responsiveness.?

considerations:

Sinus heart rhythm. With the loss of a regular heart rhythm, the
variation in PP or SV are no longer solely caused by the cyclic changes
induced by mechanical ventilation, as the irregular heart rhythm also
directly causes variations in PP. The formula used to determine the
PPV cannot separate these two effects. This is the reason why almost
all studies exclude a patient population with irregular cardiac rhythm.
The loss of its good predicting abilities and a decrease in sensitivity
and specificity were shown in a mixed ICU population® and in
postoperative cardiac surgery patients.?

No RV failure/ No pulmonary hypertension. As already mentioned,
mechanical ventilation influences RV afterload. Patients with RV
failure and/or pulmonary hypertension are especially sensitive to
increases in RV afterload. In these patients, the main effect of
mechanical ventilation shifts from the preload to the afterload effect
on the RV. This may explain the higher number of patients with high
values of PPV which are nevertheless poor fluid responders.10%103

Other considerations:

HR/MVR ratio > 3.6: De Backer et al. showed that respiratory rate
had an impact on dynamic filling parameters. Patients who were
ventilated with a high respiratory rate had lower values of PPV and
SVV. Besides the direct impact on filling times of the left and the right
ventricle, a sampling effect” is probably responsible for this effect.

" If we conceptualize the effect of mechanical ventilation as a cyclic, sinusoidal process that
we want to measure, then the heart rate can be seen as the measurement sampling
frequency. The ratio of these two frequencies (HR/MVR) has some mathematical
consequences:

Decreasing the HR/MVR will influence the maximal measured magnitude
difference within 1 cycle.
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They found the minimal heart rate over mechanical ventilation rate
ratio (HR/MVR) should be 3.6 to detect variations in aortic flow or
PPV of at least 10%.%%4

No abdominal hypertension.

Older animal studies using a pig model, showed that SVV and PPV
increase when intra-abdominal pressures (IAP) were increased to 25-
30 mmHg. The ability to predict fluid responsiveness was preserved
although the optimal threshold was shifted to higher values. Jacques
et al. found the optimal threshold for PPV to be 41%,'% Renner et al.
found a shift from 11.5% to 20.5% for optimal PPV values.® The
heterogeneity in applied IAP (30 vs 25 mmHg) and different tidal
volumes used (13 mL/kg vs 10mL/kg) might explain this difference.
Duperret et al. showed in an animal model that the effect of IAP on
PPV, is biphasic. IAP pressures up to 10-15 mmHg have minimal
impact but further increasing IAP had a proportional effect on PPV,
SVV and SPV values.'"’

The studies conducted in patients, were performed during
laparoscopy. The IAP applied in these studies were in the lower
range: 12-15 mmHg.1%® 1! These studies found that PPV and SVV did
not significantly change after implementation of these moderate
intra-abdominal pressures.

Of these, the studies using fluid challenges of 500 mL found that PPV
(during robot assisted surgery in the Trendelenburg position)!®® and
SVV measured with esophageal doppler monitoring!!! were reliable
fluid responsiveness predictors with unchanged thresholds. The
studies using smaller fluid challenges (250mL® and 3mL/kg!'°)
showed that PPV correlated with SV changes but was no longer able
to reliably predict fluid responsiveness during laparoscopy. A
systematic review by Chen et al further underlined this heterogeneity
and the need for more robust studies to draw firm conclusions.*?

Several observational cross-sectional studies revealed that these pre-
requisites undermine the applicability of PPV and SVV in clinical practice (see
Figure: 1.10).

Especially in the ICU, both in ARDS and non-ARDS patients, protective
mechanical ventilation with low tidal volumes is recommended, with
ventilation modes incorporating spontaneous breathing frequently being

HR/MVR < 2: aliasing effect: the calculated sinusoidal function for MVR will
underestimate the frequency of MVR.
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used.!® It was found that in patients admitted to the ICU a considerable
percentage of patients admitted did not fulfill the studied pre-requisites. This
percentage ranged from 3% to 42.4%.141Y

Also, during surgery, a vast proportion of patients is not eligible for the use of
dynamic filling parameters. Maguire et al. assessed 12,308 patients during
surgery and found only 63% of the patients to fulfill the full mechanical
ventilation pre-requisite. The number of patients further decreased to 41% if
the tidal volume was considered as well. A sub-analysis of the patients with
an arterial line, a population more likely to benefit from a strict hemodynamic
management, revealed that after considering the respiratory and arrythmia
pre-requisites, only 52.6% of the 1,936 patients were eligible for the use of
VAR
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Figure 1.10: Schematic overview of the individual and combined pre-requisites for the use of PPV on the applicability in clinical practice. Purple =
study in ICU patients, Blue = study in OR. SR = Sinus Rhythm, CV = Controlled Ventilation, fullCV = Controlled Ventilation without spontaneous effort,
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full CV + TV > 8ml/kg

SR + full CV + TV > 8ml/kg
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SR +CV

SR + full CV

SR+ full CV + TV > 8ml/kg
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1.5.5 Adjustments and solutions: Functional
Hemodynamic Tests.

To overcome some of these restrictions and to increase the applicability of
dynamic filling parameters, several solutions were described and tested.
These Functional Hemodynamic Tests (FHT) can be divided in 4 well studied
categories.” A schematic overview of these FHTs and their advantages and
disadvantages, is provided in figure 1.11.

Tidal Volume Challenge (TVC).

TVC was first described by Myatra et al.!*® It consists of a transient increase
in TV from 6mL/kg to 8mL/kg. The difference between PPV or SVV measured
during these two ventilation-modes, as absolute difference or as
relative/percentual change, is used as a new parameter to predict fluid
responsiveness.

In their original study in ICU-patients, they not only showed that this new
parameter has excellent prediction properties, but that it also tended to
perform better than the PPV/SVV measured with a Tidal Volume of 8mL/kg.1*°
These findings have been reproduced in small studies including patients
undergoing surgery and patients admitted to the ICU. (See table 1.2).120-124
The advantage of this FHT is the fact that it is simple to perform without the
need for advanced hemodynamic monitoring. This makes it possible to
intermittently assess fluid responsiveness in patients ventilated with low TVs,
even during laparoscopy!?? . Data on the use of TVC in ARDS patients,
however, are lacking, because only one study on ICU patients had a small
subgroup with ARDS.?*

Evidently, TVC does not offer a solution for spontaneous breathing and
arrhythmia.

* .

Besides these 4 categories, some other FHT’s have been published. Valsalva,s° lung recruitment
maneuvers'*®14% and PEEP®! test show promising results but have been tested so far in too few studies
containing few patients (see table 5). More research on these FHT’s is needed.
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Figure 1.11: Overview of the Functional Hemodynamic Tests (FHT). TVC = Tidal Volume Challenge, EEOT = End Expiratory Occlusion Test,
PLR = passive Leg Raising, MFC = Mini-Fluid Challenge. Left panel: schematic representation of the individual FHT, with the hypothetical
findings of a fluid responder (R, blue) and a fluid non-responder (NR, red). Middle panel: color-coded bar for the solution of classic pre-

requisites for the use of PPV or SVV. Red= no solution, green = solution, yellow = weak data, white = unknown. Right panel: Disadvantages

of the FHT~ s. SB= Spontaneous Breathing, AF= Atrial Fibrillation, PPV= Pulse Pressure Variation, CO = Cardiac Output, AWP = Airway
Pressure. TV = Tidal Volume, HR/MVR = Heart rate over Mechanical Ventilation Rate ratio. IAH = Intra-Abdominal Hypertension, RV failure =
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End-Expiratory Occlusion Test (EEOT).

Monnet et al. described in 2009 the EEOT.}?* It consists of an interruption of
ventilation at end expiration for 15 seconds (or longer). The percentual raise
of cardiac output associated with this pause is measured with a fast-
responding monitor.

A meta-analysis of Messina et al. including 10 studies, concluded EEOT to be
a very reliable test. with an optimal cut-off ASV > 5% to predict fluid
responsiveness with a sensitivity and specificity of 0.86 and 0.91
respectively.!®

However, more recent studies, not included in the meta-analysis, were less
optimistic. These studies, mostly in surgical patients, found less prediction
capabilities as reflected in ROCAUC’s below 0.75.120121127,128 (gee table 1.3A
and table 1.3B) These results seriously question the clinical use of EEOT,
especially perioperatively and can be partially explained by baseline TV. As
mechanical ventilation with smaller TV’s seem to decrease the ROCAUC,
sensitivity and specificity.

Further disadvantages of this FHT are the inability to cope with spontaneous
breathing, the uncertainty of the effect of prone position and/or ARDS and
the need for fast-responding hemodynamic monitoring to measure changes
in cardiac output.

Passive Leg Raising (PLR)."

Passive leg raising is a Trendelenburg maneuver standardized by Monnet et
al. (see figure 1.11) It consists of adjusting the bed position from a semi-
recumbent to a legs-up position and back. The change in cardiac output over
these three phases is calculated.

* There might be some confusion about the PLR. It was originally described as a predictor for
the effect of a real fluid challenge on cardiac output. It was shown that a raise in CO of at
least 10% reliably predicts fluid responsiveness. Some studies?4141 however, started using
this criterium to define fluid responsiveness. These studies typically determine the predictive
ability of some parameter to predict a PLR-induced raise in CO of at least 10%. Switching the
PLR from predictor for fluid responsiveness to the definition of fluid responsiveness induces
confounding.

T Some researchers investigated if PLR induced changes in PP, a variable more easily and
reliably measured, was a reliable alternative for CO. However, the meta-analysis of Monnet
et al. showed that PP had a pooled sensitivity, specificity and ROCAUC of 0.57 (0.49-0.53),
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This makes it possible to perform a reversible fluid challenge without the risk
of administering excess fluid.
To perform PLR correctly, attention should be paid to following aspects

- PLR starts in the semi-recumbent position and not in the supine
position. Adding trunk lowering further increases the amount of fluid
that is mobilized during this test up to 300mL.

- To track the changes in cardiac output during these different stages,
a reliable fast-responding measuring device is needed.

- The maneuver should be performed gently, not to evoke pain,
discomfort, awakening etc. as this changes adrenergic levels
introducing a confounding factor.

PLR is well studied and seems reliable in patients with spontaneous
breathing, low lung compliance or ventilated with low TV and atrial
fibrillation.

A meta-analysis including 21 studies found an optimal threshold of a PLR
induced ACO=10% predicting fluid responsiveness with a ROCAUC of 0.95
(0.94-0.96). Sensitivity and specificity were 0.85 (0.81-0.88) and 0.91(0.88-
0.93) respectively.'*®

Some disadvantages remain:

- Its reliability in patients with intra-abdominal hypertension is not
confirmed.*!

- Most importantly, PLR is not feasible in the operating theatre with
ongoing surgery.

129,

Mini-Fluid challenge (MFC)

Mini-fluid challenge is a test that consists of administering a small amount of
fluid, usually 100mL over a short period of time. The increase in cardiac
output from this mini fluid bolus was shown to be able to identify fluid
responders.'*?

This has been reproduced in surgical and ICU patients. (See table 1.4A and
table 1.4B)

In their meta-analysis, Messina et al., estimated the pooled ROCAUC to be
0.91 (0.85-0.97). The optimal threshold was an MFC induced increase in CO
of 5% which corresponded with a sensitivity and specificity of 0.82 (0.76-
0.88) and 0.83 (0.77-0.89) respectively.1®

0.83(0.77-0.88) and 0.77 (0.72-0.83) respectively.130 Recent studies using PLR induced
changes in perfusion index (measured with a pulse oximeter)1¢7 and capillary refill18 are
promising but need confirmation.
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The obvious advantage of the test is its applicability in patients with
spontaneous breathing!®® and in patients ventilated with small tidal
volumes.??”134 |n contrast to PLR this test is feasible during surgery.

The major drawback of this technique is the need for fast-responding cardiac
output monitoring. As with the EEOT, small differences in CO need to be
reliably determined.

Smorenberg et al. compared two monitors in a step up MFC model. They
concluded that each monitor comes with its own measurement error and its
own minimal amount that can be used as MFC.»3> Some other authors had to
adjust the calculated optimal cutoff, because it was below the sensitivity of
their monitor,??7:132

Mallat el al. proposed an elegant solution.” In their study on ventilated ICU
patients, they found that the decrease in PPV induced by the MFC could
provide an alternative (ROCAUC = 0.92). An absolute decrease in PPV of at
least 2% had a sensitivity and specificity of 0.86 and 0.85 respectively.
Another interesting fact is that the mean tidal volume used in study was
6.8ml/kg.1%¢ Recently they reconfirmed this principle in a new study on ICU
patients. In this study the change in PPV after PLR instead of MFC, was used
as a predictor, yielding almost identical promising results.**’

* Besides the clinical advantage there is also a more technical/statistical advantage. As raised
by Vistisen and Scheeren,16® MFC studies have some inherent coupling. Not only are ASVI of
the mini fluid bolus and ‘large’ fluid bolus coupled because of their shared baseline, but both
the dependent (ASVli00) and independent variable (ASVIzso) in such a study are measured
with same device. By using a predictor (APPV1qo) that differs from the independent variable
(ASVI3s0) this coupling and its potential overestimation is overcome.
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Conclusion:

Fluid management in surgical and ICU patients is challenging.
Different philosophies and scientific frameworks have colored the
‘vivid’ debate on fluid therapy.

Patients who have an increase in CO after fluid loading are defined as
fluid responsive.

Traditionally used (static) filling parameters like central venous
pressure and pulmonary wedge pressure, fail to reliably predict fluid
responsiveness in individual patients.

Dynamic filling parameters are based on the impact of full
mechanical ventilation on cardiac output, stroke volume or Pulse
Pressure.

Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV)
are the best studied dynamic filling parameters. These parameters
have shown to be very reliable predictor of fluid responsiveness if
correctly applied.

The most important pre-requisites for the correct use of dynamic
filling parameters are mechanical ventilation without spontaneous
effort, Tidal Volume > 8 ml/kg, and absence of arrhythmia’s....

These pre-requisites limit the clinical applicability in a substantial
part of surgical and ICU patients.

Different functional hemodynamic tests (FHT) have been
investigated. The best studied FHT’s are: Tidal Volume Challenge, End
Expiratory Occlusion Test, Mini-Fluid Challenge and the Passive Leg
Raising test. Each of these FHT’s have their individual advantages and
disadvantages.
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Objectives of the Thesis

Dynamic filing parameters like PPV, are well studied and reliable predictors of
fluid responsiveness if they are used correctly. The most important
prerequisites identified in the literature, are mechanical ventilation without
spontaneous effort, tidal volume >8mL/kg and absence of arrhythmias. For
most of these limitations some solutions have been proposed and
investigated. However,....?

This thesis elaborates on the last of these known shortcomings, the need for
a regular heart rhythm, without a possible solution so far, and on a new
unexplored limitation of the use of PPV in clinical practice.

Objective 1: Atrial Fibrillation and PPV.

Currently there is no solution for the limitations associated with the
application of dynamic filling parameters in patients with arrythmias
presenting for surgery. A typical and frequently occurring cardiac rhythm
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disturbance is atrial fibrillation. Yet, this fragile population would especially
benefit from a reliable predictor for fluid responsiveness.

In these patients not only the mechanical ventilation but also the irregular
rhythm causes the pulse pressure to continuously vary during surgery. The
original way to calculate PPV is unable to filter these two distinct competing
effects.

A new dynamic parameter called VPPV (Ventilation induced Pulse Pressure
Variation) that is based on a model that can accommodate for both rhythm-
induced and ventilation-induced changes in PP, is developed and tested in
two steps.

In a first step, we hypothetize that a method can be developed to predict
irregular changes in pulse pressure solely due to the chaotic sequence of
heartbeats in atrial fibrillation.

Publication 1:

Dynamic filling parameters in patients with atrial fibrillation:
Differentiating rhythm induced from ventilation-induced variations in pulse
pressure. Wyffels PAH, Van Heuverswyn F, De Hert S, Wouter PF Am J Phsyiol
— Heart circ Phys. 2016; 310(9): H1194-H1200.
htips://doi.orq/10.1152/ajpheart.00712.2015

In a second step, a model is developed that predicts the fluctuations of PP
based on this first principle along with other predictors. This proof-of-concept
study tests the hypothesis that it is feasible to extract a value from this model
defined as VPPV (Ventilation induced Pulse Pressure Variation), that
guantifies the isolated impact of mechanical ventilation. We tested the
response of this new parameter in a legs-up study protocol mimicking
different filling statuses, expecting to find a proportional decrease in VPPV
after PLR.

Publication 2:

New algorithm to quantify cardiopulmonary interaction in patients with
atrial fibrillation: a proof-of-concept study. Wyffels PAH, De Hert S, Wouters
PF. Br J Anesthesia 2021; 126(1): 111-119.
htitps://doi.orq/10.1016/j.bja.2020.09.039



https://doi.org/10.1152/ajpheart.00712.2015
https://doi.org/10.1016/j.bja.2020.09.039

Objectives 61

Objective 2: Measurement error of PPV.

Every measurement comes with error. This universal truth also applies for the
measurement/calculation of PPV. But the error and the uncertainty that
comes with it, is rarely discussed in fluid responsiveness studies.

Based on the data from patients undergoing liver transplantation from the
open VitalDB database, a Bayesian model is developed to determine the bias
and precision of 4 families of methods to calculate PPV. The impact of these
findings on the concept of grey zone uncertainty and on the recently
proposed use of PPV in FHT’s are simulated and questioned.

Publication 3:

The measurement error of Pulse Pressure Variation. Wyffels PAH, De Hert S,
Wouters PF. J Clin Monit Comput 2023 (publ: 8/12/2023)
htitps://doi.orq/10.1007/s10877-023-01099-x
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‘... Chaos is merely order waiting to
be deciphered...”

José Saramago,
O Homen Duplicado, 2002



Rhythm induced variations in
Pulse Pressure

In this chapter, we present a theoretical framework that enables a separate
analysis of rhythm- and mechanical ventilation-induced changes in pulse
pressure in patients with atrial fibrillation. These findings provide a basis for
the development of a dynamic parameter that enables to predict fluid
responsiveness in these patients.

%k k¥

Wyffels PAH, Van Heuverswyn F, De Hert S, Wouters PF.
Dynamic filling parameters in patients with atrial fibrillation:
differentiating rhythm-induced from ventilation-induced variations in
pulse pressure.

Published in Am J Physiol Heart Circ Physiol. 2016; 310(9): H1194-200.
https://doi.org/10.1152/ajpheart.00712.2015
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3.1 Abstract:

In patients with sinus rhythm, the magnitude of mechanical ventilation (MV)-
induced changes in pulse pressure (PP) is known to predict the effect of fluid
loading on cardiac output. This approach, however, is not applicable in
patients with atrial fibrillation (AF). We propose a method to isolate this
effect of MV from the rhythm-induced chaotic changes in PP in patients with
AF. In 10 patients undergoing pulmonary vein ablation for treatment of AF
under general anesthesia, ECG and PP waveforms were analyzed during
apnea (T1) and during MV at tidal volumes of 8 mL/kg (T2) and 12 mL/kg (T3),
respectively. In a first step, three mathematical models were compared in
their ability to predict individual PP at T1. The best-fitting model was then
selected as the reference to quantify the effects of MV on PP in these
patients. A local polynomial regression model based on two preceding RR
intervals (LOC2) was found to be superior to the quadratic models to predict
PP. LOC2 was therefore selected to quantify variations in PP induced by MV.
During T2 and T3, magnitude of PP deviations was related with the amplitude
of tidal volume [mean bias error (SD) of -5 (6) and -8 (7) mmHg for T2 and T3,
respectively; P = 0.003 repeated-measures ANOVA]. We conclude that LOC2
most accurately predicted rhythm-induced variations in PP. MV-induced
deviations in PP can be quantified and may therefore provide a method to
study cardiopulmonary interactions in the presence of arrhythmia.
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3.2 Introduction

Volume replacement is a corner stone treatment in the hemodynamic
management of critically ill patients. The need for volume administration was
initially guided on classical static parameters such as central venous pressure
and pulmonary artery occlusion pressure. In clinical practice however, these
static preload parameters have been shown not to be able to accurately
predict fluid responsiveness.’™ Fluid responsiveness relates to the beneficial
effect of fluid loading on the cardiac output.

During mechanical ventilation (MV) the effects of the cyclic changes in
intrathoracic pressures, hence venous return, on the magnitude of beat-to-
beat variations in stroke volume, are inversely related to a patient’s
intravascular volume. These effects are quantified and expressed as stroke
volume variation (SVV) or pulse pressure variation (PPV) (see fig 3.1) and have
been shown to provide a suitable way of detecting hypovolemia and fluid
responsiveness.*?

Current guidelines therefore recommend the use of these dynamic preload
variables, to direct volume therapy in hemodynamically unstable patients.®
Numerous studies support the validity of this concept’ however it is only
applicable to patients undergoing full mechanical ventilation® with
sufficiently high tidal volumes®!® and an intact chest wall.} Importantly,
current recommendations also exclude patients with arrhythmia for dynamic
preload assessment, as the available algorithms cannot distinguish pulse
variations resulting from irregular heartbeats from those induced by MV (see
fig 3.1). Patients with atrial fibrillation typically have an intrinsic variation in
pulse pressure and fluid responsiveness can therefore not readily be
guantified by assessing SVV or PPV. The development of an algorithm that
allows distinction of effects on variations in pulse pressure or stroke volume
by the irregular heart rhythm and effects induced by MV would greatly
enhance the applicability of fluid responsiveness assessment in these
patients.

Interestingly, there is a significant number of relevant studies in cardiology
literature, focusing on the analysis of the determinants of PP and SV in
patients with AF. A positive curvilinear relation between the RR interval
preceding a beat and the subsequent PP has been observed. Moreover, in a
number of patients a negative correlation was observed between the pre -
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Figure 3.1: Schematic representation of the current framework to assess mechanical ventilation induced variation in pulse pressure. Upper panels (A-B) are
for patients with sinus rhythm. Lower panels (C-D) are for patients with AF. Waveforms of 9 consecutive heartbeats during apnea measured with a radial
arterial line are displayed on the left side (A and C). Waveforms of 9 consecutive heartbeats during one respiratory cycle are displayed on the right side (B

and D). The distributions of the pulse pressures during apnea and mechanical ventilation (MV) are shown in the inset in the middle. The formula to quantify
the variation in pulse pressure (PPV) is also displayed. It can be seen that this formula is only applicable in SR since there is minimal variation in PP during

apnea. In patients with AF this formula is no longer valid since it fails to correct for the variation in PP before mechanical ventilation is applied. It calculates a

percentage of variation that is the resultant of the effect of both rhythm and MV. The aim of our study and the basis for this new framework is to replace this
approach by a model that is capable to minimize the variation between predicted and measured PP during apnea in patient with AF. This model then, can be
used as a reference to measure the variations in PP during Mechanical Ventilation.
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preceding RR interval and the corresponding SV.*?

Rawles®® incorporated these findings into a mathematical model to predict
SV in spontaneously breathing patients. In this study he was able to predict
69% of variations in SV when a quadratic polynomial equation was used.
Alternative multivariate regression methods were not tested. Furthermore,
all the included patients where breathing spontaneously and this model was
never tested during MV.

The aim of the current study was to develop a framework to isolate the two
interfering mechanisms (rhythm and mechanical ventilation) that result in
the observed beat-to-beat variation in PP. This would then enable the
development of a dynamic preload parameter that allows to predict fluid
responsiveness in a population previously excluded from this monitoring
technology.

To address this question, we first compared 3 mathematical models in their
ability to predict PP in patients with atrial fibrillation when only the effect of
an irregular heartbeat is at play. Subsequently the most accurate model was
selected as the reference to describe and quantify the superimposed
influence of mechanical ventilation on PPV.

3.3 Materials and Methods

3.3.1 Study Population

After approval of the institutional trial board and ethics committee of the
Ghent University Hospital Ghent, this study was registered with the local code
EC/2011/145 and with number B670201110842 for Belgium. Informed
consent was obtained from all participants according to the Helsinki
Declaration and ICH/GCP.

Ten AF patients who were planned for a pulmonary vein isolation under
general anesthesia were included, if they fulfilled following criteria: (1) Age
>18years, (2) Atrial fibrillation during study period and (3) ASA 1,2 or 3.
Exclusion criteria were: (1) Participation in a clinical trial within the past 30
days, (2) Chronic Obstructive Pulmonary Disease, (3) Right ventricular failure,
(4) Aortic valve insufficiency or stenosis and (5) an average heart rate of
>140/minute.
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3.3.2 Anesthesia Protocol

All patients had a standard induction and maintenance of anesthesia. A
combination of bolus sufentanil 0.1-0.2 pg/kg, propofol 2 mg/kg and
cisatracurium 0.15mg/kg were used for induction. After intubation,
sevoflurane (End Tidal fraction 1.7-2.0 %) was used for maintenance,
supplemented with aliquots of 5 ug sufentanil. Besides the standard
monitoring (5lead ECG, pulse oximetry and noninvasive blood pressure)
monitoring, a 3F catheter (Leadercath Arterial, Vygon, France) was placed in
the radial artery. The transducer was levelled at the mid-axillary line and
zeroed to atmospheric pressure.

3.3.3 Data Acquisition

During the different registration periods, ECG (Il and V2) and arterial pressure
signals were simultaneously registered. Each registration channel stored the
signals with a sample rate of 1000Hz using LabSystem Pro v2.4a (BARD
®Electrophysiology, Lowell, MA, USA).

3.3.4 Study Protocol

All patients presented with an irregular rhythm, so there was no need to
experimentally induce AF.

Three registration periods were included, with each period lasting for 60
seconds. The ventilation mode was the only independent variable that
differed between periods. The fixed sequence for every patient was: T1:
Apnea, T2: 12 x 8 mL/kg Tidal Volume (TV), T3: 8 x 12 mL/kg TV. Between
every registration period a 5 min period was taken to allow for return to
baseline conditions.

Data were analyzed off-line. For every individual beat the pulse pressure (PP),
and both the preceding RR-interval (RRy) and the second preceding RR-
interval (RR.;1) (see figure 3.2), were quantified for subsequent analysis.



Rhythm-induced Variation in PP 71

PP

RR_; RRo

Figure 3.2: Terminology: for every individual beat, the 2 preceding R-intervals (RRo and RR.;)
were used to construct a prediction model, to predict the pulse pressure (PP).

3.3.5 Statistical Analysis

This study consisted of a two-step analysis:

1. Apneic Prediction Surface (APS).
To assess the variability of PP induced by the chaotic heart rhythm isolated

from MV, measurements were taken during T1, a 60sec apneic period.
For every patient three individual prediction models were compared.

1. Model Q1: A quadratic model using the preceding RR interval
(RRo).

PP = a + b(RR,) + c(RR,)?
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2. Model Q2: The Rawles model: A polynomial quadratic model
based on the two preceding RR intervals (RRo and RR.1).

PP =a-+ b(RR_l) + C(RR_l)Z + d(RRo) + e(RRo)z

3. Model Loc2: A local second order Polynomial Regression Fitting
model using RRp and RR; as independent variables. This is a non-
parametric regression using local second order regression.'* (See
Appendix for Model description) A plotted example of such an
“apneic prediction surface” is shown in figure 3.3(A).

Both Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were
determined to assess the performance of the individual models. These
measures were compared with repeated measures ANOVA. P-values of <0.05
were considered significant. Pair-wise comparisons were made using Holm-
Bonferroni correction for p-values.

2. Deviation from APS during ventilation.
To assess the effects of MV as monitoring tool for fluid responsiveness in
these patients, we aimed to test two features of MV induced changes in PP.
These features were extrapolated from the known mechanisms of
cardiopulmonary interactions in patients with SR.
- MVinduces a gradual decrease in PP throughout the cycle, compared
to the apneic reference PP.®
- The MV induced decreases in PP are proportional to the applied
TV.15'16

Graded increase of the TV through the 3 registration periods (TV = O0mL/kg
(T1), TV = 8mL/kg (T2), TV = 12mL/kg) yielded the deviation from the model
known to predict a PP solely on the base of the intrinsic irregular rhythm
(APS). An example of the effect of implementing the stepwise increase of the
Tidal Volume is shown in figure 3.3.

For each data point, the residual was calculated. If the RR intervals of a data
point fell out of the range of the RR intervals on which the APS was built, the
residual could not be determined and this data point was discarded from
analysis.

Mean bias error (MBE) for each observation period for every individual
patient was calculated and compared using ANOVA for repeated measures.
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All statistical analyses were made with RStudio Version 0.98.1091 based on R
3.0.2. (RStudio,inc)

3.4 Results

Demographic data are given in table 3.1.

All registration periods were complete except for Patient 8 period T3. Data in
that registration segment could not be used due to dampening of the arterial
curve.

Sex, men/women 6/4
Caucasian, % 100
Age, yr 57.5 (55.5-65.0)
Weight, kg 94.5 (71.8-99.3)
Length, cm 180 (171-183)
Cardiovascular comorbidity, n
Hypertension 6
Hypercholesterolemia 1
Ischemic heart disease 1 (CABG)
Corrected valvular disease 1 (AS)
Corrected congenital heart disease 1 (vSD)
Congestive heart failure 0
Diabetes/ metabolic syndrome, n 3
Stroke/ transient ischemic attack, n 2
Medication, n
Amiodarone 2
Digoxin 1
Flecainide 2
Beta-blockers 6
Calcium channel blocker 2
ACE inhibitor/ All blocker 2
Diuretics 3

Table 3.1: Demographic data of included patients. Summary data are given median
(interquartile range). CABG, coronary artery bypass grafting; AS, aortic valve stenosis; VSD,
ventricular septal defect.
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1. Apnoeic Prediction Surface. (APS)

For every patient the 3 prediction models in apneic conditions (T1) were
calculated. The RMSE (mmHg) and MAE (mmHg) of every model were
determined for all 10 patients. Repeated measures ANOVA showed a
significant difference between the models for both RMSE and MAE (p=0.001
for both analyses). The mean (SD) of RMSE was 5 (3), 3(2), 2(1) for Q1, Q2
and LOC2 respectively. The mean (SD) of MAE was 3(2), 2(1), 1(1) for Q1, Q2
and LOC2 respectively. Pairwise comparisons between the 3 models were all
significant as can be seen in Figure 3.4. For every individual patient the LOC2
outperformed the two other quadratic models in predicting the rhythm-
induced variability during apnea. Consequently, the individual LOC2 model
was used as the best APS in the subsequent steps of the study.

2. Deviation from APS during mechanical ventilation.

The residuals and the Mean Bias Error were calculated using the patient
specific APS to predict the PP for each time sequence of the study. In all but
one case, the deviations from the APS were observed as expected: applying
MV induced negative deviations from the APS. This is in line with the known
mechanisms investigated in patients with SR.*>®

The magnitude of these deviations increases with the magnitude of the
applied tidal volume. A repeated measures ANOVA for the MBE was
significant (p = 0.003). MBE (mmHg) was 0 (0), -5(6), -8 (7) for T1, T2 and T3
respectively. The pairwise comparisons using Holm-Bonferroni correction
were all significant as can be seen in fig 3.5.

Figure 3.3: Apneic Prediction Surface (APS) and effect of Mechanical Ventilation on
deviation from the APS using incremental Tidal Volume: 3D plot examples of the three
registration periods of Patient 2. LOC2 model (red grid) is printed as reference on all the
plots. (A) T1: apnea for 60 seconds. APS with the individual data points in red. (B) T2: APS
and individual data points during mechanical ventilation (12 x 8ml/kg) are printed as
yellow dots. (C) T3: APS and individual data points during T3 (8 x 12 ml/kg) are printed as
green dots RR intervals (msec), PP (mmHg).
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Figure 3.4: Individual residual mean-square error (RMSE) (black dots) and mean absolute

error (MAE) (open triangle) of the 3 prediction models (Q1, Q2, LOC2) during observation

period T1 (Apnea). P values of the pairwise comparisons using Holm-Bonferroni correction
are added.
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Figure 3.5: Effect of ventilation on predicted values of PP using APS. Individual mean bias
error (mmHg) of each observation period (T1, Apnea; T2, 8 x 12mL/kg; T3, 12 x 8 mL/kg). P
values of the pairwise comparisons using Holm-Bonferroni correction are added.
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3.5 Discussion

The main finding of the current study is that it is possible to isolate rhythm-
induced changes in PP from MV induced changes in PP in patients with AF.
This is of clinical relevance because in patients with SR the MV induced
changes in PP are now generally accepted to be superior in predicting fluid
responsiveness (= the effect of fluid loading on cardiac output). We present a
two-step model that can be used as a framework to analyze the effects of MV
independently from heart rhythm disturbances in patients with AF.
Specifically, our data confirm that also in patients with AF, it is possible to
predict the PP of an individual heartbeat during an episode of apnea, when
the effect of mechanical ventilation effect is eliminated. Our proposed model
of local polynomial quadratic regression based on the two preceding RR
intervals outperforms a previous published model®® and a simple quadratic
model based on a single preceding RR-interval. Therefore, this model can be
used as a reference to determine changes induced by MV. Subsequently the
data demonstrate that the magnitude of the deviations from the APS
correlate with the magnitude of the applied tidal volume. These properties
enabled us to differentiate PPV in mechanically ventilated patients with AF
into two components: the variations induced by the intrinsic chaotic heart
rhythm (APS) and variations induced by the cyclic changes in intrathoracic
pressures caused by MV (The spread of negative deviations from the APS).
The magnitude of the latter component is known to reflect filling status and
predict volume responsiveness in patients with SR.

Full mechanical ventilation offers a unique model to assess perioperative
hemodynamics for two reasons:

(1) MV imposes intrathoracic pressure changes affecting different
determinants of cardiopulmonary interactions in a reversible way. The
distribution of these pressure changes within the thorax is complex but, in
normal subjects, the main effect of this maneuver is a decrease in venous
return.!”*® This short lived change in loading condition of the right ventricle
can be traced as its impact travels through the pulmonary vascular bed and
eventually determines cardiac output of the left ventricle.

Taken together, MV enables the practitioner to perform an “inverse fluid
challenge” and to make a two-point plot of the individual Frank-Starling
curve.?®

(2) The second feature of MV that makes it an ideal tool is the fact that it is a
perfectly cyclic maneuver. Repeated standardized changes in venous return,
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coupled to a regular heartbeat, causes predictable oscillations in SV and PP.
These oscillations are easily measured and can be monitored continuously.
Different parameters based on these oscillations have been described and
studied. The percentual changes in PP and SV, known as Pulse Pressure
Variation (PPV) and Stroke Volume Variation (SVV) are available in different
commercially available monitors. An automated standardized ventilatory
maneuver was proposed to evaluate the impact of MV on systolic blood
pressure in a clinical setting.?>?°

These physiologic and practical advantages affirm the superior clinical
performance of the MV induced/dynamic parameters. Marik and
coworkers®>”?! performed a series of meta-analyses in which he was able to
clearly show that the predictive values of these oscillations are improved in
comparison with classic “static” parameters like CVP and PAOP to predict the
effect of a fluid challenge on cardiac output. He found a threshold of 12.5(+/-
1.6) % and 11.6(+/-1.9) % variation for PPV and SVV respectively, to have good
predictive value.” More recently, a grey zone approach was described.
Cannesson et al?? used a more sophisticated method and found that
prediction characteristics between a PPV of 9% and 13% were inconclusive.
Incorporating the resolution of the oscillations after a fluid challenge was able
to narrow this grey zone.??

The clinical superiority of these parameters holds only when the
prerequisites are respected: A regular heart rhythm, full mechanical
ventilation without spontaneous breathing interfering with the standardized
intrathoracic pressure swings and tidal volumes, big enough to have a
substantial effect on intrathoracic pressures?* in a closed thorax.!! Some
criticism has been formulated in light of these prerequisites and the
complexity of the underlying physiology.

The condition of AF creates an obvious problem in the implementation of
these dynamic parameters in clinical practice. This growing population has
always been excluded in research protocols. These patients, however, may
benefit more than others from meticulous perioperative fluid management.
A first hurdle to address when solving this problem is to find a way to
decompose the two sources of variation in PP: the chaotic rhythm and the
cyclic MV.

It has long been understood that rhythm induced variations of SV are
multifactorial. Different filling times (RRo) of an individual beat are
responsible for dispersion of the ejected SV. !%° In some patients, RR.; was
found to have an inverse correlation with SV.}2 This has been explained by
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changing contractility’>?”?®, possibly combined with changes in LV

afterload.?**

There have been some attempts to bring this knowledge into practice. Some
investigators indexed their beat-to-beat observations according to the
RRo/RR.: ratio. The value when RRo/RR.1=1 can sometimes be used as the
overall mean. This has been described for Emax (end-systolic pressure-volume
ratio)**32, Doppler measured aortic peak flow velocity and time-velocity
integral®33, dP/dtmax.>>3*

To our knowledge there is only one published mathematical model that
incorporates the two preceding RR intervals to predict individual SV in
patients with AF. Rawles'® compared different models, even adding up to 4
preceding RR intervals in the analysis to predict SV. Stroke distance, measured
with transcutaneous aortovelography was used as the surrogate for SV. After
stepwise multiple regressions he selected a quadratic polynomial equation
based on RRg and RR.;. With this model he was able to explain 69% of the
observed variations. Interestingly, all these patients were breathing
spontaneously.

We found that our model performed better than the Rawles model in
predicting the rhythm-induced variation in PP during apnea. We decided to
use the local polynomial regression mainly because of two advantages.
Theoretically every curvilinear relation can be reliably described without
knowledge of the global relation. Furthermore, in patients with AF it is known
that the distribution of RR intervals is not always normal, making a non-
parametric method like local polynomial regression a more suitable
choice.?>%

This APS forms a good reference to describe and quantify the effects of
mechanical ventilation on changes in PP. In line with the knowledge from MV
induced changes of PP in patients with SR, the observed deviations behaved
as expected: in all but one patient, they produced a depression of PP.
Increasing the tidal volume enhanced this effect and widened the spread of
deviations. On a 3D plot (see figure 3.3) these two superimposed effects are
easily recognized as the APS (purely rhythm induced) and the vertical spread
under the surface (MV added to rhythm).

These findings form the basis for a new framework that can be used to
develop a new parameter that is a measure of MV induced PP changes in
patients with AF. In analogy with patients in SR, this principle can be used to
determine these variations continuously or to use it in standardized
ventilatory maneuver. Further studies to assess the accuracy and clinical
usefulness of such parameters are needed.
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The present findings should be interpreted within the constraints of the
methodology used. First, this is a small study that included only 10 patients.
Our results were however significant; our model predicted individual PP’s,
with sufficient accuracy to clearly disclose MV induced deviations. For this
framework to be clinically useful, it should describe these effects with
sufficient power. Moreover, we should bear in mind that for each patient a
mean of 74 data points per registration period were used to perform the
analysis.

Secondly, our study does not provide additional insight into mechanisms
underlying cardiopulmonary interaction. Our aim was to develop a
mathematical and graphical way to isolate the two sources of variation that
can form the basis for an intelligent algorithm to quantify cardiopulmonary
interactions. The exact interplay of changing venous return, varying
contractility, or afterload, can only be assumed from extrapolation of the
findings in patients with sinus rhythm. However, the shape and position of
the APS may offer additional clues to assess cardiac performance as the
relationship between R-R intervals and subsequent PP and SV have been
linked to filling status and inotropic state. Thirdly, we used PP as a surrogate
for SV. We chose to use PP because it is a parameter easily measured in
clinical practice. Furthermore, in adults with SR, PPV was shown to perform
at least as good as SVV in predicting fluid responsiveness.” The relationship
between PP and SV is determined by the compliance of the vascular system.
This was one of the suggested reasons why PPV loses its predictive properties
in children.’” The exact role of hypertension or specific antihypertension
medication cannot be determined in this study because of the low number
of patients and is subject of further research.

In conclusion, we developed a framework to isolate the two superimposed
sources of variation in PP in patients in AF: the chaotic rhythm and the cyclic
changes induced by MV. This is based on the use of a modified model that
uses the two preceding RR-intervals of a beat to predict the PP during apnea
(APS). The effect of MV can be evaluated based on the sense and the
magnitude of deviations from this APS. This principle can be used to develop
and investigate a parameter for MV induced changes in PP, potentially a
dynamic parameter to predict fluid responsiveness in patients with AF.



Rhythm-induced Variation in PP 81

References

1. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid
responsiveness? Chest. 2008;134(1):172-178. https://doi.org/10.1378/CHEST.07-
2331

2. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid

responsiveness? An updated meta-analysis and a plea for some common sense. Crit
Care Med. 2013;41(7):1774-1781.
https://doi.org/10.1097/CCM.0B013E31828A25FD

3. Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit
Care. 2012;18(3):256-260. https://doi.org/10.1097/MCC.0B013E3283532B73

4, Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness
during mechanical ventilation. Crit Care. 2000;4(5):282-289.
https://doi.org/10.1186/CC710

5. Michard F. Changes in arterial pressure during mechanical ventilation.
Anesthesiology. 2005;103(2):419-428. https://doi.org/10.1097/00000542-
200508000-00026

6. Kozek-Langenecker SA, Afshari A, Albaladejo P, et al. Management of severe
perioperative bleeding: guidelines from the European Society of Anaesthesiology.
Eur J Anaesthesiol. 2013;30(6):270-382.
https://doi.org/10.1097/EJA.0BO13E32835F4D58B

7. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform
derived variables and fluid responsiveness in mechanically ventilated patients: A
systematic review of the literature. Crit Care Med. 2009;37(9):2642-2647.
https://doi.org/10.1097/CCM.0B013E3181A590DA

8. Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients
with spontaneous breathing activity. Curr Opin Crit Care. 2008;14(3):334-339.
https://doi.org/10.1097/MCC.0B013E3282FD6E1E

9. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations
to predict fluid responsiveness: influence of tidal volume. Intensive Care Med.
2005;31(4):517-523. https://doi.org/10.1007/S00134-005-2586-4

10. Muller L, Louart G, Bousquet PJ, et al. The influence of the airway driving pressure
on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care
Med. 2010;36(3):496-503. https://doi.org/10.1007/500134-009-1686-Y

11. Wyffels PAH, Sergeant P, Wouters PF. The value of pulse pressure and stroke volume
variation as predictors of fluid responsiveness during open chest surgery.
Anaesthesia. 2010;65(7). https://doi.org/10.1111/j.1365-2044.2010.06371.x



https://doi.org/10.1378/CHEST.07-2331
https://doi.org/10.1378/CHEST.07-2331
https://doi.org/10.1097/CCM.0B013E31828A25FD
https://doi.org/10.1097/MCC.0B013E3283532B73
https://doi.org/10.1186/CC710
https://doi.org/10.1097/00000542-200508000-00026
https://doi.org/10.1097/00000542-200508000-00026
https://doi.org/10.1097/EJA.0B013E32835F4D5B
https://doi.org/10.1097/CCM.0B013E3181A590DA
https://doi.org/10.1097/MCC.0B013E3282FD6E1E
https://doi.org/10.1007/S00134-005-2586-4
https://doi.org/10.1007/S00134-009-1686-Y
https://doi.org/10.1111/j.1365-2044.2010.06371.x

82

Chapter 3

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Greenfield JC, Harley A, Thompson HK, Wallace AG. Pressure-flow studies in man
during atrial fibrillation. J Clin Invest. 1968;47(10):2411-2421.
https://doi.org/10.1172/JCI105924

Rawles JM. A mathematical model of left ventricular function in atrial fibrillation.
Int J Biomed Comput. 1988;23(1-2):57-68. https://doi.org/10.1016/0020-
7101(88)90063-3

Cleveland WS, Devlin SJ. Locally Weighted Regression: An Approach to Regression
Analysis by Local Fitting. J Am Stat Assoc. 1988;83(403):596.
https://doi.org/10.2307/2289282

Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P. Assessing fluid-
responsiveness by a standardized ventilatory maneuver: the respiratory systolic
variation test. Anesth Analg. 2005;100(4):942-945.
https://doi.org/10.1213/01.ANE.0000146939.66172.AE

Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and
cardiac contractility on variations in pulse pressure, stroke volume, and
intrathoracic blood volume. Intensive Care Med. 2011;37(10):1672-1679.
https://doi.org/10.1007/500134-011-2304-3

Lansdorp B, Hofhuizen C, Van Lavieren M, et al. Mechanical ventilation-induced
intrathoracic pressure distribution and heart-lung interactions*. Crit Care Med.
2014;42(9):1983-1990. https://doi.org/10.1097/CCM.0000000000000345

Van Den Berg PCM, Jansen JRC, Pinsky MR. Effect of positive pressure on venous
return in volume-loaded cardiac surgical patients. J Appl Physiol (1985).
2002;92(3):1223-1231. https://doi.org/10.1152/JAPPLPHYSIOL.00487.2001

Brookes CIO, White PA, Staples M, et al. Myocardial contractility is not constant
during spontaneous atrial fibrillation in patients. Circulation. 1998;98(17):1762-
1768. https://doi.org/10.1161/01.CIR.98.17.1762

Trepte CJC, Eichhorn V, Haas SA, et al. Comparison of an automated respiratory
systolic variation test with dynamic preload indicators to predict fluid
responsiveness after major surgery. Br J Anaesth. 2013;111(5):736-742.
https://doi.org/10.1093/BJA/AET204

Marik PE, Lemson J. Fluid responsiveness: An evolution of our understanding. BrJ
Anaesth. 2014;112(4):617-620. https://doi.org/10.1093/bja/aet590

Cannesson M, Le Manach Y, Hofer CK, et al. Assessing the diagnostic accuracy of
pulse pressure variations for the prediction of fluid responsiveness: a “gray zone”
approach. Anesthesiology. 2011;115(2):231-241.
https://doi.org/10.1097/ALN.0BO13E318225B80A



https://doi.org/10.1172/JCI105924
https://doi.org/10.1016/0020-7101(88)90063-3
https://doi.org/10.1016/0020-7101(88)90063-3
https://doi.org/10.2307/2289282
https://doi.org/10.1213/01.ANE.0000146939.66172.AE
https://doi.org/10.1007/S00134-011-2304-3
https://doi.org/10.1097/CCM.0000000000000345
https://doi.org/10.1152/JAPPLPHYSIOL.00487.2001
https://doi.org/10.1161/01.CIR.98.17.1762
https://doi.org/10.1093/BJA/AET204
https://doi.org/10.1093/bja/aet590
https://doi.org/10.1097/ALN.0B013E318225B80A

Rhythm-induced Variation in PP 83

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Le Manach Y, Hofer CK, Lehot JJ, et al. Can changes in arterial pressure be used to
detect changes in cardiac output during volume expansion in the perioperative
period? Anesthesiology. 2012;117(6):1165-1174.
https://doi.org/10.1097/ALN.0B013E318275561D

Lakhal K, Enrmann S, Benzekri-Lefevre D, et al. Respiratory pulse pressure variation
fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit
Care. 2011;15(2). https://doi.org/10.1186/CC10083

Sondergaard S. Pavane for a pulse pressure variation defunct. Crit Care.
2013;17(6):1-6. https://doi.org/10.1186/CC13109/FIGURES/3

Braunwald E, Frye RL, Aygen MM, Gilbert JW. Studies on Starling’law of the heart.
IIl. Observations in patients with mitral stenosis and atrial fibrillation on the
relationships between left ventricular end-diastolic segment length, filling pressure,
and the characteristics of ventricular contraction. J Clin Invest. 1960;39(12):1874-
1884. https://doi.org/10.1172/JCI1104211

Schneider F, Martin DT, Schick EC, Gaasch WH. Interval-dependent changes in left
ventricular contractile state in lone atrial fibrillation and in atrial fibrillation
associated with coronary artery disease. American Journal of Cardiology.
1997;80(5):586-590. https://doi.org/10.1016/S0002-9149(97)00426-8

Hardman SMC, Noble MIM, Seed WA. Postextrasystolic potentiation and its
contribution to the beat-to-beat variation of the pulse during atrial fibrillation.
Circulation. 1992;86(4):1223-1232. https://doi.org/10.1161/01.CIR.86.4.1223

Muntinga HJ, Gosselink ATM, Blanksma PK, De Kam PJ, Van Der Wall EE, Crijns
HJGM. Left ventricular beat to beat performance in atrial fibrillation: Dependence
on contractility, preload, and afterload. Heart. 1999;82(5):575-580.
https://doi.org/10.1136/hrt.82.5.575

Gosselink ATM, Blanksma PK, Crijns HIGM, et al. Left ventricular beat-to-beat
performance in atrial fibrillation: contribution of Frank-Starling mechanism after
short rather than long RR intervals. J Am Coll Cardiol. 1995;26(6):1516-1521.
https://doi.org/10.1016/0735-1097(95)00340-1

Sumida T, Tanabe K, Yagi T, et al. Single-beat Determination of Doppler-derived
Aortic Flow Measurement in Patients with Atrial Fibrillation. Journal of the
American Society of Echocardiography. 2003;16(7):712-715.
https://doi.org/10.1016/50894-7317(03)00275-X

Suzuki S, Araki J, Morita T, et al. Ventricular contractility in atrial fibrillation is
predictable by mechanical restitution and potentiation. Am J Physiol. 1998;275(5).
https://doi.org/10.1152/AJPHEART.1998.275.5.H1513



https://doi.org/10.1097/ALN.0B013E318275561D
https://doi.org/10.1186/CC10083
https://doi.org/10.1186/CC13109/FIGURES/3
https://doi.org/10.1172/JCI104211
https://doi.org/10.1016/S0002-9149(97)00426-8
https://doi.org/10.1161/01.CIR.86.4.1223
https://doi.org/10.1136/hrt.82.5.575
https://doi.org/10.1016/0735-1097(95)00340-1
https://doi.org/10.1016/S0894-7317(03)00275-X
https://doi.org/10.1152/AJPHEART.1998.275.5.H1513

84

Chapter 3

33.

34.

35.

36.

37.

38.

Tabata T, Grimm RA, Greenberg NL, et al. Assessment of LV systolic function in atrial
fibrillation using an index of preceding cardiac cycles. Am J Physiol Heart Circ
Physiol. 2001;281(2). https://doi.org/10.1152/AJPHEART.2001.281.2.H573

Nakamura Y, Konishi T, Nonogi H, Sakurai T, Sasayama S, Kawai C. Myocardial
relaxation in atrial fibrillation. J Am Coll Cardiol. 1986;7(1):68-73.
https://doi.org/10.1016/S0735-1097(86)80261-3

Van Den Berg MP, Van Noord T, Brouwer J, et al. Clustering of RR intervals predicts
effective electrical cardioversion for atrial fibrillation. J Cardiovasc Electrophysiol.
2004;15(9):1027-1033. https://doi.org/10.1046/J.1540-8167.2004.03686.X

Guo XH, Gallagher MM, Bland JM, Camm AJ. A distinctly bimodal distribution
pattern in the RR interval histogram predicts early recurrence of atrial fibrillation
after electrical cardioversion. Int J Cardiol. 2010;145(2):244-245.
https://doi.org/10.1016/J.1JCARD.2009.08.012

Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness
in children: a systematic review. Anesth Analg. 2013;117(6):1380-1392.
https://doi.org/10.1213/ANE.OB013E3182A9557E

Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am
Stat Assoc. 1979;74(368):829-836.
https://doi.org/10.1080/01621459.1979.10481038



https://doi.org/10.1152/AJPHEART.2001.281.2.H573
https://doi.org/10.1016/S0735-1097(86)80261-3
https://doi.org/10.1046/J.1540-8167.2004.03686.X
https://doi.org/10.1016/J.IJCARD.2009.08.012
https://doi.org/10.1213/ANE.0B013E3182A9557E
https://doi.org/10.1080/01621459.1979.10481038

¥ 12)dvYy )



“The proof of the pudding
is in the eating.”

Miguel de Cervantes, Don Quixote (1615)
Nicolas Boileau-Despréaux, Le luttin (1682)



VPPV: Ventilation induced
Variations in Pulse Pressure

In this chapter, we extend the findings on modelling the rhythm induced beat-
to-beat changes in pulse pressure in atrial fibrillation introduced in the
previous chapter. A new, more complex model that simultaneous predicts
both rhythm-induced and ventilation induced changes in pulse pressure, is
presented. This model is the basis for a new measure, Ventilation induced
Pulse Pressure Variation (VPPV) that quantifies the impact of mechanical
ventilation on PP. The robustness of this new measure, VPPV, was tested in
leg ups study-design.
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A new algorithm to quantify cardiopulmonary interaction in patients
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4.1 Abstract

Background: Traditional formulas to calculate Pulse Pressure Variation (PPV)
cannot be used in patients with atrial fibrillation (AF). We have developed a
new algorithm that accounts for arrhythmia-induced pulse pressure changes,
allowing us to isolate and quantify Ventilation-induced Pulse Pressure
Variation (VPPV). The robustness of the algorithm was tested in patients
subjected to altered loading conditions. We investigated whether changes in
VPPV imposed by passive leg raising (PLR) were proportional to the pre-PLR
values.

Methods: Consenting patients with active AF scheduled for an ablation of the
pulmonary vein under general anaesthesia and mechanical ventilation were
included. Loading conditions were altered by PLR. ECG and invasive pressure
data were acquired during 60 second periods before and after PLR. A
generalized additive model was constructed for each patient on each
observation period. The impact of AF was modelled on the 2 preceding RR
intervals of each beat (RRo, RR.1). The impact of ventilation and long-term PP
trends were modelled as separate splines. VPPV was defined as the
percentage of the maximal change in PP during the ventilation cycle.

Results: 9 patients were studied. The predictive abilities of the models had
amedian r? of 0.92 [89.2-94.2 IQR]. Pre-PLR VPPV ranged from 0.1% to 27.9%.
After PLR, VPPV decreased to 0%-11.3% (p<0.014). The relation between the
Pre-PLR values and the magnitude of the changes imposed by the PLR was
statistically significant (p<0.001).

Conclusions:
This algorithm enables quantification of ventilation induced PPV in patients
with AF with the ability to detect changing loading conditions.
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4.2 Introduction

Dynamic filling parameters like Stroke Volume Variation (SVV) and Pulse
Pressure Variation (PPV), have obtained a central place in haemodynamic
management and volume therapy because of their reliability in predicting
fluid responsiveness.! 2 National and international guidelines 3 4 advise on
perioperative use of these parameters for goal-directed treatment and they
form the backbone of closed loop haemodynamic systems that are being
developed.5 Still, there are some prerequisites to correctly use SVV and PPV.6
These include closed chest conditions 7 8 full mechanical ventilation at
sufficiently high tidal volumes 9, the absence of spontaneous breathing 10 and
the presence of a sinus rhythm (SR).11 12 Some alternatives have been
proposed to overcome the constraints for ventilator settings. 13 14 Major
arrhythmias such as AF, however, remain an unresolved issue in this context.
The prevalence of AF in patients presenting for surgery ranges from 0.8% to
3.7% 15, a number that is only expected to raise in the future with an ageing
population.16 The inability to isolate the haemodynamic effects of an intrinsic
irregular heart rhythm from those induced by mechanical ventilation
precludes the clinical use of dynamic preload assessment with traditional
monitoring techniques.

We have previously developed a model to predict the effect of an irregular
heart rhythm on the beat-to-beat variation in pulse pressure (PP) in patients
with AF, based on the duration of the 2 preceding RR-intervals of each
individual heartbeat.'! This model, however, did not allow for quantification
of other potential influencing factors on PP changes. Beat-to-beat changes of
PP are indeed influenced by various additional factors.?’ In the current study
we present the principles of an adapted algorithm based on deconvolution
of the blood pressure signal into separate functions. This allows separation of
such distinct factors and the isolation, as well as the potential quantification
of Ventilation induced Pulse Pressure Variation (VPPV).

To prove this, we tested the response of this new parameter to alterated
loading conditions induced by a passive leg raising (PLR) manoeuvre.
Extrapolating from the knowledge of PPV in patients with a regular
heartbeat!8 19, we investigated the relationship between changes in VPPV
imposed by PLR and the pre-PLR value. We hypothesized a proportional
decrease of VPPV.
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4.3 Methods

Compliance with ethical standards

After approval of the institutional trial board and ethics committee of the
University Hospital Ghent, this study was registered with the local code
EC/2011/145 and with number B670201110842 for Belgium. Informed
consent was obtained from all participants according to the Helsinki
Declaration and ICH/GCP. The study took place between 12/2011 and
3/2014. This report concerns the second part of the study. The first part of
the study consists of the same cohort of patients and is previously
published.!! Due to practical reasons (the presence of the researcher,
availability of study monitors etc) a convenience sample was taken of
consecutive patients who were planned for a pulmonary vein isolation under
general anaesthesia. Patients were included, if they fulfilled following
criteria: (1) Age >18 years, (2) Atrial fibrillation during the study period and
(3) ASA 1,2 or 3. Exclusion criteria were: (1) Participation in a clinical trial
within the past 30 days, (2) Chronic Obstructive Pulmonary Disease, (3) Right
ventricular failure, (4) Aortic valve insufficiency or stenosis and (5) an average
heart rate of >140 beats/min.

Study procedure

All patients had a standard induction and maintenance of anaesthesia. A
combination of bolus sufentanil 0.1-0.2 mcg/kg, propofol 2 mg/kg and
cisatracurium 0.15 mg/kg was used for induction. After intubation,
sevoflurane (end-tidal concentration 1.7-2.0 %) was used for maintenance of
anaesthesia and supplemented with aliquots of 5 mcg sufentanil to control
analgesia. Besides the standard monitoring (5-lead ECG, pulse oximetry and
non-invasive blood pressure), a 3F catheter (Leadercath Arterial, Vygon®,
France) was placed in the radial artery. The transducer was levelled at the
mid-axillary line and zeroed to atmospheric pressure.

During the different registration periods, ECG (lead Il and V2) and arterial
pressure signals were stored at a sample rate of 1000 Hz using LabSystem Pro
v2.4a (BARD ® Electrophysiology, Lowell, MA, USA). Two registration periods
of 60 seconds were used for further analysis: After stabilisation, a baseline
measurement was taken with the anaesthetized patient in semi-recumbent
position and the same measurements were repeated immediately after
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careful adjustment of the bed position to perform the PLR manoeuvre as
previously described. %

Ventilator settings were the same for both periods: respiratory frequency of
12 per minute with a I:E ratio of 1:2 and a tidal volume of 8mL/kg with PEEP
set at 5¢cm H,0.

Data Analysis

Data were analysed off-line using a personal Matlab®-script based on the
methods described by Li et al.2! For each observation period, PPV was
calculated in the traditional way as previously published.?? These calculated
values are referred to as ‘PPV’. From the raw data of a 60 sec observation
period (Figure 4.1A), 4 variables were determined in addition to pulse
pressure (PP) for every individual beat. The first two variables, the preceding
RR-interval (RRo) and the second preceding RR-interval (RR.) were
determined as previously described.!! (figure 4.1B) The third variable is the
relative timing of the R wave of the ECG of the particular heart beat within
the 5 second respiratory cycle. (Figure 4.1B, line 3) The fourth variable that
accounts for trending, is the absolute time of the particular heartbeat within
the 60 s observation period. (Figure 4.1B, line4)

Modelling

Starting from the raw PP data of each observation period of 60 s (figure 4.2
upper panel), the individual impact of each of the variables was identified. A
generalized additive model (GAM) was determined to predict PP based on
‘RRo’” and ‘RR.1’ (the effect of an irregular heartbeat), ‘Ventilation’ (the effect
of ventilation) and trending of the PP over time (the effect of low-frequency
changes in PP).Y” GAM is an expansion of the traditional multiple linear
regression model, allowing a non-linear function for each of the variables as
follows.?®

Gam formula

PP = By + f(RRy) + f(RR_;) + f(Ventilation) + f(Trend) + &
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Figure 4.1: Terminology and schematic representation of the analysis of the raw data.
A: Raw data of a 60s observation period. The arterial pressure (line 1, red) and the ECG
signal (line2) of the consecutive beats are shown. Line 3 shows the timing of the
ventilator cycles (VC).

B: detail from A. For each pulse (pi) the pulse pressure (PP) and 4 variables were
extracted. The 2 preceding RR intervals (RRo; and RR.3,) as previously described!4, the
relative timing within each VC (line 3) and its timestamp (line 4). This procedure is
repeated for every pulse within the 60s input window.
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The functions used in the model were penalized natural cubic splines for RRo,
RR.1 and Trend, and cyclic splines for Ventilation, allowing for flexible non-
linear modelling (for further explanation see Appendix).

VPPV was calculated, in analogy of the classical model for PPV, as the range
of impact of ventilation on PP, normalized for the mean of PP. The intercept
of the GAM, o, is mathematically equal to the mean of the PPs of the data
points included in the model.

(f(Ventilation),,,, — f Ventilation),,;,)

VPPV (%) = 100
Bo

The impact of variations in the length of the observation window was
estimated in a post-hoc analysis as follows. The algorithm to quantify VPPV
was applied successively in progressively shorter windows, starting at the
reference episode of 60 s with successive reductions of 1 s until the model
indicated failure to solve the function. The resulting VPPVs were calculated
for every step in the procedure and absolute differences with the
corresponding reference value (VPPVgo) were determined.

Statistical Analysis

After testing for normality with the Shapiro Wilk test, data are reported as
median [IQR] or mean (SD) as appropriate. Comparisons between the 2
measurement periods were performed using a paired t-test or a paired
Wilcoxon test for PPV and VPPV values. Correlation was assessed using the
Spearman rank correlation coefficient. P values < 0.05 were considered
statistically significant. Goodness of fit of each individual GAM model was
assessed based on the r?. All statistical analyses were done using R (version
3.5.0)?* base packages and ‘mgcv’ package (1.8-24) for gam.?®



Chapter 4

94

GAM MODEL OUTPUT

INPUT

3

og

a8uey , 00T

(o9sw) awiy
00009 0000% 00002 0

= (%) AddA

g v

(oasw) awn
00009 0000% 00002

+ (8ulpuaur)f

9pAD Aojeadsay uiyim Buiwi ] 20sW Ul (1-4y) [eAs9)ul ¥y Buipedaid-aid 29sw ul (0YY) [eaaul Y Buipasald
00’k sLo 050 szo 000 0041 006 004 005 0011 006 00 005
g 0
oL
sz
el o} e
hy ] o
El El 3
3 03 ° 5
= = =
a o a
x4
oL
0s 0s

+(uonejnuap)f + (Tyy)f + (oyy)yf  +°d

dd

(o9sw) awny
00009 0000% 00002

Z'v 2Inbl4



Ventilation-induced Variation in PP 95

4.4 Results

10 patients were included in the study. Due to a technical problem with the
invasive arterial blood pressure measurement, 1 patient was excluded.
Patient characteristics are displayed in table 4.1.

For all 18 observation periods (baseline and PLR in 9 patients), the goodness
of fit of the model was determined. The median amount of deviation of PP
explained by the model, was 91.3% (IQR: 89.2-94.2).

RRo and RR.j, the two predictors used to describe the effect of atrial
fibrillation were statistically significant in all 18 observation periods.
Trending, the predictor for overall PP changes during the observation period
was significant in 7 of the 18 observation periods. The Ventilation function
was statistically significant in 7 of the 9 observation periods before PLR,
suggesting the presence of significant cardiopulmonary interaction. After
PLR, this distinct cyclic ventilation pattern, was present in only 2 out of 9
patients. The shape of the ventilation spline ranged from a horizontal line (no
effect) to a clear sinus like curve. The relative timing of the predicted peak
was not constant. The time, however, between the functions’ maximum and
minimum values was 51% (+/- 3%) of the duration of the ventilatory cycle.
The magnitude of VPPV decreased significantly after PLR, while PP increased
significantly with this manoeuvre. (Table 4.2) There was a linear relationship
between baseline VPPV’s and the change in VPPV after PLR (p < 0.0001). The
Spearman’s rank correlation coefficient was -0.92 (p= <0.001), indicating a
strong negative correlation. (Figure 4.3) In comparison to VPPV values
calculated with this new method in AF patients, the corresponding PPV values

Figure 4.2: Schematic presentation of the analysis procedure.

INPUT (upper panel): example of a full 60s window. All consecutive, time stamped beats are
plotted against the individual PP (mmHg). All individual beats are coded according to the
procedure described in figure 1.

MODELLING (middle panel): A General Additive Model is calculated. PP is predicted as the
sum of intercept (%) and the 4 functions: RRo, RR-1, the timing within the ventilation cycle
and the timestamp of each beat.

OUTPUT (lower panel): A. Example of the reconstructed signal. The fitted values for PP,
based on the unique values of predictors of every beat are projected in red over the raw
signal for comparison. B. Formula for quantification of the effect of ventilation (red
function, middle panel) as a percentage of the range of the function over the intercept of
the model.
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Sex, men/women 6/3
Caucasian, % 100
Age, yr 59 (55-78)
Weight, kg 95 (65-112)
Length, cm 183 (160-185)
Cardiovascular comorbidity, n

Hypertension

Hypercholesterolemia

Ischemic heart disease

Corrected valvular disease

Corrected congenital heart disease

Congestive heart failure
Diabetes/ metabolic syndrome, n
Stroke/ transient ischemic attack, n
Medication, n

Amiodarone

Digoxin

Flecainide

Beta-blockers

Calcium channel blocker

ACE inhibitor/ All blocker

Diuretics

N WORRKRREOD®D

W NDNOONEDN

CHA2DS2-VASc score 1.5 (1-5)
ASA physical status 2(2-3)

Table 4.1: Patient characteristics of included patients. Data are expressed as median
(range). ACE, angiotensin-converting enzyme; CHA2DS2-VASc, congestive heart failure,
hypertension, age, diabetes mellitus, and stroke-vascular disease, age, and sex category.

obtained with the traditional algorithm were much higher although PPV
before and after the PLR differed significantly (Table 4.2). However, the
Spearman’s rank correlation coefficient between pre-PLR value and its
absolute change was -0.38 (p=0.21) indicating a weaker correlation for PPV
than for VPPV. (Figure 4.3). The median RR interval and its variation changed
profoundly after PLR in one particular participant. Excluding the data of this
results. (See Appendix)
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The post-hoc analysis on the impact of the length of observation window
showed that the minimum period needed for the model to have enough data
points to determine its coefficients was 23 s [20 s-26 s] (median, IQR). If a
standard window of 46 seconds was used, all 18 models would have been
able to calculate a VPPV value. This corresponds to a minimal number of data
points of 28 [27-30] (median, IQR), which was independent of the individual
HR. The overall absolute differences between the VPPV calculated with a
shorter observation window and the VPPVeos were 0.0% [-1.0%, 3%] (median,
IQR). (See Appendix)

Pre PLR Post PLR P-value

VPPV (%) 9.9 [0.1-27.9] 1.4 [0-11.3] 0.014
PPV (%) 134 [14.5-197.9] | 36.8[7.6-192.7] | 0.019
HR:

beats (min-1) 80 [73-91] 73 [64 - 75] 0.09
Median RR (ms) 777 [660 — 827] 828 [804 — 940] 0.222
Range RR (ms) 718 [506 — 990] 787 [628 - 0.667

1088]
PP (mmHg) 33 [32, 40] 48 [42, 52] 0.027

Table 4.2: Comparison between pre and post passive leg raising (PLR). VPPV:
Ventilation induced Pulse Pressure Variation, PPV: Pulse Pressure Variation, HR is
described using 3 criteria: number of heart beats per minute, the median of the RR-
intervals and the range of the RR-intervals for each observation period. PP: Pulse
Pressure in mmHg is calculated as the median of the PP of each observation period. Data
are presented as median [IQR]
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4.5 Discussion

The main finding of our study is that the impact of mechanical ventilation on
PP can be quantified in patients with AF. Traditional algorithms used to assess
PPV fail to discriminate between the effects of arrhythmia and
cardiopulmonary interaction in patients with irregular heart rate and cannot
be used to predict volume responsiveness in this subgroup. Our new
approach is based on the separation of the blood pressure signals into the
different components affecting the beat-to-beat variation in PP. It behaves
like the classic dynamic filling parameters such as PPV in that an increase in
venous return decreases the impact of mechanical ventilation on the PP,
especially when the baseline value is high. Applying the classic formula in AF
patients overestimates the ventilation induced changes in PP 26, because it
cannot distinguish between the intrinsic beat-to-beat variation in PP based
on the irregularity of the heart rhythm on the one hand and the cyclic change
imposed by the ventilator on the other hand (See Table 4.2, Figure 4.3).

In a first step to separate these 2 effects, we previously described a method
to predict individual PP’s in apnoeic patients in AF (See Figure 4.1).11 This
method was based on the findings of Rawles 27 who first developed a 2-factor
mathematical model to describe the influence of a preceding R-R interval
(RRo) and pre-preceding R-R interval (RR.1) on the pulse pressure (and stroke
volume) of each individual beat respectively. Different physiologic
explanations have been proposed to explain this interaction between R-R
intervals and PP. A direct non-linear relationship between RRo and PP (See
Figure 4.2) has been attributed to effect of ventricular filling time during
diastole 28. The indirect relationship between RR.; and PP (See Figure 4.2) is
explained by the effects of diastolic time on calcium reuptake, translating into
calcium availability during subsequent myocardial contraction 29, and/or a
potential alteration of LV afterload.30 Regardless of the mechanism, in the
current study we combined this approach with two other possible sources of
changes in PP’s, which are ventilation and trending over time. Our model is
able to retrospectively decompose the successive beat to beat changes in PP,
into these 3 sources: intrinsic irregular heart rhythm, mechanical ventilation,
and slow PP changes over time. Interestingly, our data show that among the
4 variables of the model, RRy is the predictor with the greatest predictive
power. This explains why, in contrast to patients with regular heart rhythm,
the ventilation induced cyclic changes in PP cannot easily be recognised
visually on screen, even when the ventilatory effect is substantial.
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VPPV (%)
classic PPV (%)

Absolute change in VPPV after PLR (%)
i R

Absolute change in classic PPV after PLR (%)

10 20 50 100 150
Pre PLR VPPV (%) Pre PLR Classic PPV (%)

Figure 4.3: Pre- and post-PLR plots of (a) VPPV and (b) PPV. Individual values before PLR
are plotted against their absolute change after the LR manoeuvre for (c) VPPV and (d)
PPV. Spearman's rank correlation coefficients are 0.92 and 0.38 for VPPV and PPV,
respectively, indicating a strong negative correlation between baseline VPPV and
changes in VPPV with leg raising. PLR, passive leg raising; PPV, pulse pressure variation
(%); VPPV, ventilation-induced pulse pressure variation (%). Shadow of the regression line
signifies it is 95% confidence interval.

We used a generalized additive model (GAM). This modelling technique has
two advantages. First, it is very flexible. The relationship of each predictor
with the dependent variable can be described by splines, a smoothing exact
shape or coefficients (See Appendix).

Second, these relationships are calculated simultaneously and are additive.
This means that the model consists of a simple sum of these individual
functions. The function of each predictor is determined independent of each
other. Because of these two properties we used this approach to quantify the
isolated impact of ventilation. To do this, we slightly changed the traditional
formula to calculate PPV: The range of changes in PP imposed by the
ventilator was divided by the mean value of PP (3, of the model, Figure 4.2).
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In patients with AF there is lack of good evidence to reliably predict fluid
responsiveness. However, some alternatives have been proposed previously
in the literature. PLR has the theoretical advantage that it is a ventilator
independent technique with minor impact of the heart rhythm. A recent
meta-analysis, that pooled the data of 23 clinical trials failed to conclude on
the ability of PLR to predict fluid responsiveness in AF, because the majority
of the included patients had sinus rhythm.31 Kim et al studied the capability
of 2 techniques to predict fluid responsiveness in a group of 43 patients with
AF.32 The first technique, PEEP induced changes in CVP failed to discriminate
between responders and non-responders after a fluid bolus of 300 ml of
colloids. PLR, on the contrary had some predictive abilities. A raise of 7.3% in
SVI after PLR had a sensitivity of 71% and specificity of 79% to predict a
cardiac output raise of 10%. Their reported discriminatory power (ROC of
0.771) is lower than that reported for patients in sinus rhythm however.31
One explanation for this result could be that the cardiac output
measurements, especially the smaller ones after PLR are less reliably
measured due to AF.3334 On top of this, PLR is very unpractical to perform
with on-going surgery, which undermines its widespread use in the operating
theatre. Bortolotti et al reported on the use of respiratory changes of the
inferior caval vein diameter in a group of spontaneously breathing patients
with AF (53%) or frequent extrasystoles (47%) 35 presenting with septic shock
in the ICU. Surprisingly their results were more optimistic than the results of
a recent meta-analysis comparing the ability of inferior caval vein
collapsibility to predict fluid responsiveness with different ventilator settings
(High TV, low PEEP vs Low TV high PEEP).36 So, these findings need to be
reconfirmed.

Beside AF, extrasystoles may also be a reason for irregular heartbeat.
Cannesson et al. showed in a dog model, that it is possible to correct classic
SVV for extrasystoles. After excluding extra systoles along with the following
beat and after extrapolation based on the remaining beats, their corrected
SVV performed markedly better in predicting fluid responsiveness than the
uncorrected SVV (ROC 0.892 vs 0.596).12 In contrast to Cannesson et al.,
Vistissen et al did not leave out the extrasystolic beats but used them. Their
concept is based on the idea to use the prolonged extra systolic filling time,
as a preload changing technique. Although this principle has been confirmed
37, recent clinical data were disappointing.38 Interestingly, their concept is
partially related to our model as their method can be seen as an attempt to
provide a two-point plot of our RRo-PP relation of the beat that follows an
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extra-systolic beat. It does not, however, take the effect of RR.; into account,
which Rawles et al. demonstrated to be significant.?’

The novelty of our approach is that we developed a method to filter the
whole signal into its different driving processes. This enables us to quantify
the isolated effect of mechanical ventilation on PP. The current study was
intended to demonstrate proof of concept. It does not provide direct proof
that the proposed variable is a good predictor for fluid responsiveness. We
developed an algorithm that is able to quantify the impact of mechanical
ventilation on PP and we showed that this measured value changes in the
same way PPV changes in patients with SR, when the venous return is
increased. In our protocol we used PLR to provoke such changes. Although
PLR is used in clinical practice, it is a surrogate for a real fluid challenge and
when performed suboptimal, it might lose its reliability.?’ We performed the
classical PLR manoeuvre. However, we decided not to measure cardiac
output as it has previously been shown that the measurement error for both
absolute values and changes in cardiac output increases in patients with AF.
3339 This lack of accuracy is only partially corrected when longer measuring
periods are used.>® The limited power to estimate real changes in cardiac
output during AF complicates its use as a gold standard to detect short-lived
effects of PLR in this study. Without this reference, only indirect indicators,
such as the increase in MAP and PP, could serve to assess the global
haemodynamic effect of PLR. We also did not perform a control
measurement after the return to the semi-recumbent post PLR because of
procedural time constraints. A return of VPPV to its baseline value, would
have been useful to affirm the reliability and applicability of the manoeuvre.
Another limitation of our study is the low number of included patients. The
primary goal of our study was to investigate the correlation between pre-PLR
values for VPPV and its changes imposed by PLR. Low and mediocre
correlation coefficients would undermine the usefulness of this parameter in
clinical practice as it would indicate a low signal-to-noise ratio. A post-hoc
analysis reveals that setting o = 0.05 and 3 = 0.2, a correlation coefficient of
0.8 or higher can be detected in a sample of 9 patients. The determination of
the exact correlation coefficient, however, would have been more reliable if
more patients had been included. Since calculation of VPPV is based on a
regression model, some degree of measurement uncertainty must be
considered. The exact interplay between distinct functions within the
algorithm and their subsequent effect on sensitivity of this new variable
remains to be determined. Some of the settings of the model, like epoch and
exact timing of the ventilator, were arbitrarily chosen. We based our model
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on a 60s window, because this epoch seemed a reasonable period in clinical
practice. Theoretically, a shorter epoch would be able to pick up more short-
term changes. This advantage, however, may come with the cost of a more
inaccurate determination of the parameter, limiting its use in clinical practice.
Calculations based on a wider window on the other hand may provide a more
stable but damped model. Our post hoc analysis suggests that a shorter
epoch is able to calculate a VPPV value. Interestingly, the minimal number of
beats for the algorithm to calculate its coefficients was constant for all
periods, independent of the individual HR. The accuracy of these values is still
unclear. Future research, based on longitudinal data, is needed to determine
the optimal epoch or the optimal number of beats.

The exact timing of the ventilation could not be measured in our protocol. As
a result, shifts of the real to the arbitrarily set respiratory cycle in the current
study have occurred in our analysis. This explains why the timing of the
functions’ maximum is not consistent. There was, however, a minimal
variance in time between maximum and minimum predicted values of about
half the respiratory cycle. This might be explained by the combined direct
afterload reduction effect and the delayed effect of decreased venous return
of insufflation that results in a dispersion of the effect on PP from a 1:2 (I:E)
ratio to a 1:1 ratio. Although we think that this lack of synchronisation does
not impact the measurement of the range of these cyclic changes,
incorporating the exact time-stamped data from the ventilator mechanics
into the model may provide a more accurate physiologic insight into these
studied interactions.

All these issues need to be resolved before this model and its derived
parameter, VPPV, can ultimately be tested for its ability to predict fluid
responsiveness i.e., as sole parameter or incorporated in a tidal volume
challenge.

In conclusion, our findings show the ability of a new algorithm to quantify
ventilation induced variations in PP in patients with AF in the presence of
different loading conditions, thereby providing a potential tool for future
studies to assess fluid responsiveness in patients with AF.
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‘... Measurement:
A quantitatively expressed
reduction of uncertainty based
on one or more observations. ...’

Douglas W Hubbard



Measurement Error of Pulse
Pressure Variation

In this chapter, we investigate an unexplored limitation in current research
concerning dynamic filling parameters like Pulse Pressure Variation. As
different methods to calculate PPV have been used in clinical studies and each
one of these methods come with an intrinsic measurement error, this often-
overlooked source of uncertainty may impact the interpretation of literature
and the use of PPV in clinical practice. Based on a Bayesian model build with
data from the VitalDb, we estimate the measurement error of 3 classes of
approaches to calculate PPV and simulate the impact of these measurement
errors on the uncertainty of measured PPV values.
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5.1 Abstract

Background: Dynamic preload parameters are used to guide perioperative
fluid management. However, reported cut-off values vary and the presence
of a gray zone complicates clinical decision making. Measurement error,
intrinsic to the calculation of pulse pressure variation (PPV) has not been
studied but could contribute to this level of uncertainty. The purpose of this
study was to quantify and compare measurement errors associated with PPV
calculations.

Methods: Hemodynamic data of patients undergoing liver transplantation
were extracted from the open-source VitalDatabase. During these surgeries,
3 algorithms were applied to calculate PPV based on 1 minute observation
periods. For each method, different durations of sampling periods were
assessed.

Best Linear Unbiased Prediction was determined as the reference PPV-value
for each observation period. A Bayesian model was used to determine bias
and precision of each method and to simulate the uncertainty of measured
PPV-values.

Results: All methods were associated with measurement error. The range of
differential and proportional bias were [-0.04%,1.64%] and [0.92%,1.17%)]
respectively. Heteroscedasticity influenced by sampling period was detected
in all methods. This resulted in a predicted range of reference PPV-values for
a measured PPV of 12% of [10.2%,13.9%)] and [10.3%,15.1%] for two selected
methods. The predicted range in reference PPV-value changes for a measured
absolute change of 1% was [-1.3%,3.3%] and [-1.9%,4%] for these two
methods.

Conclusion: We showed that all methods that calculate PPV come with
varying degrees of uncertainty. Accounting for bias and precision may have
important implications for the interpretation of measured PPV-values or PPV-
changes.
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5.2 Introduction

‘... It is one of those contradictions of life that although measurement
always carries uncertainty, the uncertainty in measurement is rarely
discussed. ... *.
Leonard Mlodinow !

The impact of measurement error is often neglected in medical research. This
specifically applies to the research concerning dynamic filling parameters.
Several decades ago, the physiologic mechanisms that are at play when a
patient is mechanically ventilated were unraveled.? Parameters like Pulse
Pressure Ventilation (PPV) and Stroke Volume Variation have been defined to
guantify these mechanisms and have shown to reliably predict the effect of
fluid loading on cardiac output (fluid responsiveness).>* The reliability was
further refined with the identification of a grey zone for optimal thresholds®
and the pre-requisites for the correct use of these parameters in clinical
practice were specified. (e.g., tidal volume restrictions, the need for a regular
heart rhythm, closed chest conditions, no spontaneous breathing ...).5° Most
recent studies, in this area of hemodynamic research, concentrated on
overcoming these restrictions. Tidal Volume challenge has been proposed as
a work-around when lower tidal volumes are used.’®!! An algorithm to
correct for irregular heartbeat has been described'? and several variants on
the Passive Leg-Raising test (PLR), as a universally applicable method in
intensive care settings have been investigated.!>

However, although calculating PPV is intuitive and easy, over the years, some
slight methodologic variations can be found in the literature. One of these
subtle differences is the number of respiratory cycles used in the calculations.
The vast majority is based on 3 consecutive respiratory cycles®®, but numbers
up to 8 have been reported.!® Furthermore, the procedure for the
identification of minimum and maximum Pulse Pressures (PP) can differ
between research groups. It is mostly determined for each respiratory cycle
individually and then averaged, but some variant methodologies have been
described.®1®

Clinicians, and more recently also some research groups use
commercially available monitors that automatically and continuously
calculate dynamic filling parameters like PPV. Only few research has been

10,11
’
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done to compare these automated values with the manually calculated
values used in research setting. Although these studies found a high
correlation between methods, interchangeability between these methods
could not be withheld.!”*®

This heterogeneity in methods may well be an important source of variability
in reported cutoff values, grey zones, and prediction properties ...

The purpose of our study is to systematically explore the measurement error
for different variants to calculate PPV and the uncertainty that comes with it.

5.3 Methods

Data acquisition and extraction

For this analysis the open on-line VitalDB database was used. This database
harbors high-fidelity bio-signals of 6388 surgeries and was originally
registered under the number NCT02914444. The development and the
structure of the data set, the technical specifications and demographics of
the studied population have been recently described.'® The vitaldb-Python
package?® was used to filter out only the adult liver transplantation cases. For
each case, 4 timestamped waveforms were identified: Electrocardiogram
(ECGII, 500Hz), invasive radial artery blood pressure (Art, 500Hz), ventilatory
pressure profiles (AWP, 62.5 Hz) and end-tidal CO2 (ETCO2, 62.5Hz).
Respiratory Rate (RR), measured with plethysmography was extracted as a
timestamped list.

For each included case, 6 data strips, consisting of the 4 synchronized
waveforms, with an observation window of 60sec were selected. All data
strips met the following criteria:

- No artifacts in the arterial wave forms

- Full mechanical ventilation as evidenced by the AWP and ETCO2

- Hemodynamic stability in the observation window

- Atleast 10 minutes in-between the adjacent observation windows

These data strips were identified using a personalized R-code and manually
validated after visual inspection.

An adapted Matlab® script based on Li et al, was used to identify diastolic,
systolic and pulse pressure for each beat??, along with the respiratory rate of
each strip.
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Figure 5.1: ‘iPPV’-family and ‘pPPV’-family of the respiratory cycle-based methods to
calculate PPV. Example to explain the difference between the two methods based on the
same 3 Respiratory Cycles (RC). Upper Panel A: minimum and maximal Pulse Pressure
(PP) are depicted in bold for each individual cycle. PPV, using the base formula, is
calculated for each individual RC. The value of iPPV; is the mean of these 3 values. Lower
Panel B: minimum and maximum PP of all the beats pooled together from the 3 RC’s are
identified and used in the base formula to calculate pPPVs. Vertical lines identify the
beginning or ending of a respiratory cycle.
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Different methods to calculate PPV

All methods to calculate PPV are based on the same base formula:

(Ppmax - PPmin)
(PPmax + PPmin)/
2

PPV (%) = 100

The different approaches to apply this formula were grouped into three
classes.

A. ‘Individual RC PPV’-class: iPPV
The base formula is applied to each RC individually. The average of
these individual adjacent PPV’s is taken. (See: figure 5.1) e.g., iPPV3
averages the PPV of 3 successive RC’s. In our study, iPPV1 up to iPPVs
was determined from each data strip. (See figure 5.2)

B. ‘Pooled RC PPV’-class: pPPV
The base formula is applied to all the PP’s of all successive RC’s
pooled together. This way, the formula is applied only once. (See:
figure 5.1) e.g., pPPVs, pools all measured PP’s of 3 adjacent RC’s
together. As such, the maximal PP and the minimal PP do not
necessarily come from the same RC.2® In our study, pPPV; up to pPPVs
is determined for each data strip (See figure 5.2).

C. Time window-based class: tPPV.

Because most of the algorithms of the commercially available
monitors are not publicly available, we choose to assess only one
frequently cited method. A detailed description of this algorithm was
publicized by Aboy et al.’®?? In contrast to the 2 preceding classes,
tPPV is not based on a predefined number RC’s but on a fixed time
window to include the PP’s for calculation. For our analysis, we used
the following predefined windows: 12sec, 15sec, 20sec, 30sec and
60sec. e.g., tPPVy is the value using this algorithm on a 20 sec data
strip. (See figure 5.2).
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Statistics

P(measuredPPV| BLUP)

To study the measurement error in this study, with different numbers of
replicates per method, a Bayesian model based on the two-step approach by
Taffé was used.”

- Model development:
A. Bias and Precision

The measurements of each method (M) can be modelled as:

M(xj)i = Bo + fr1x; + S(M(Xj))i
Or

M(xj)l- ~ N(Bo + B1x; :01\24(x]-))

Where M(xj)l, is the i" replicate of the measurement of the real (unknown)
value x; by model M. Each independent measurement of x; can be seen as
a random sample from a normal distribution with both a mean and a
variance that changes in function of x;. This formula is used to determine
the measurement error that consists of bias and precision:

The mean of this normal distribution is equal to (8, + B;x;). This function
is further decomposed into a differential bias ( 5y, the fixed bias irrespective
of the value x;) and a proportional bias (f; — 1, the bias in function of x;).

The spread of the replicate measurements of M(xj)i, Jﬁ,(xj), is a measure

for the precision of the method. Heteroskedasticity, non-constant variance
or in this case precision, is coded into the formula as a linear relation:

e(M(x;));~N (0, e%o*®1%))
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Now for each method, the distribution of the measurement of a real value x;
can be written as:

Ml(x ) ]V(ﬁo]\/[1 + BlMlx ea0M1+CI1M1x1)
MZ(x ) N(Bom, + Bim,Xj, g¥oMz T 1M X))

M; (x )~N(,80M3 + Bim; X)) e ®oMs T M5 X))

B. A Reference Method

To simplify calculations and to overcome the identification problem, a
surrogate reference method is chosen. This means, more specifically, that
bias for this method is set to 0 and bias-parameters of the other methods are
determined in relation to the reference method.

Choosing M1 as reference method this makes:

Ml(xj)~N(O + 1.x;, e“°M1+“1M1xi)
M, (x )~N(,80M2 + Bim, %), e ®oMz T M X))

M3(x ) N(IBOM3 + ﬁlMsx g¥oM3 T XMz X))

C. Best Linear Unbiased Predictor (BLUP)

After choosing a reference method, we applied the same method as Taffé to
estimate the underlying true values. In this study, iPPV:1 was chosen as
reference, because of its highest number of replicates. Based on a regression
model for My(xj), by marginal maximum likelihood allowing
heteroscedasticity they predict x; by the mean of its posterior distribution.
This predicted value is called the BLUP (Best Linear Unbiased Predictor).??
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Ml(BLUPj)~N(0 + 1.BLUP,, eO-’oM1+a’1MlBLUPj)
My (BLUP;)~N (Bom, + Bim, BLUP;, e®oM2* 1Mz BLUP )
Ms; (BLUPJ')’”N(ﬁoMg + Bim, BLUP;, g®omz+ a1z BLUP

D. Combining all methods

A Bayesian interaction model to determine the linear components of bias and
error for each measurement method was build. A weakly informative prior
for all components was used. With a sample size of more than 15000
measurements for 530 independent values we expected the likelihood would
dominate the posterior. A detailed description of the model and the used
priors can be found in Appendix C.

- Visualization
Results are visualized in 3 plots: A Bias plot is generated where the linear
function for bias (ﬁOMy + (BlMy — 1) BLUP;) and its uncertainty is depicted,

grouped per method-class. A Precision plot is generated where the
transformed linear function for error (%My + alMyBLUPj) and its
uncertainty is depicted, grouped per method-class. Finally, the prediction of
each model with its uncertainty over the full range of BLUP; is generated.

(P(Measured PPV | BLUP) : the expected distribution of measured PPV values
conditional on a specific BLUP value.)

P(BLUP| measured PPV) and P(ABLUP| Ameasured PPV) for the iPPV: and
tPPVis method.

To simulate the impact of the measurement error on clinical decision making
and to assess the density of a BLUP conditional on a measured value, the
original model was adapted:

A set of data points were added to the original data set containing a range of
measured iPPV3 values and tPPVis values from 9 to 15, with a missing BLUP-
value. The formula of the model was adjusted, allowing imputation for
missing predictor data. These imputed densities for the missing data were
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used to simulate the densities of changes in x; given a change in measured
values Ml-(xj) (See: Github/supplementary data) iPPVs and tPPVis were
chosen to compare because, (1) iPPV; is the most used method in the
literature and (2) these 2 methods have the best comparable observation
windows.

Software

Statistical analysis and visualization were performed with R (R, version 4.2.0,
Core Team, Vienna, Austria, 2016) using the tidyverse-package (1.3.1) and
MethodCompare-package (0.1.2).2* Bayesian modeling was done with STAN
through brms (2.17.0), bayesplot-package (1.9.0) and tidybayes-package
(3.0.2).

The exact code, the source-data and guidance for repeating our analysis, is
publicly available on GitHub: https://github.com/pwyffels/Measurement-
Error-PPV

5.4 Results

In total 98 adult patients undergoing liver-transplantation are included in
VitalDB. Import of complete data sets failed for 10 cases. Demographic
description of the remaining 88 cases that were included for analysis can be
found in table 5.1. Per case, 6 data strips were selected. For one case only 4
data strips were included due to artifacts and periods of atrial fibrillation,
resulting in a total of 526 data strips of 1 minute.

A. P (measured PPV | BLUP)

For each method the coefficients of the model were calculated and can be
found in table 5.2. Bias and Precision plots for visualization of the 2
components of measurement error can be found in figure 5.3.

The ‘Individual RC PPV’-class showed minimal bias. Precision decreased for
higher values of BLUP. This heteroscedasticity decreased with increasing
numbers of included respiratory cycles. For the ‘Pooled RC PPV’-class both
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Table 5.1: Demographics of included patients as reported in the VitalDB.
Data are given median[range] for continuous data and number(percentage) for
categorical data.

Age (year) 53.5[18-82]
Sex M 27/88 (31%)
Weight (kg) 59.1 [36.5-81.4]
Height (cm) 166 [139 — 181]
BMI (kg/m2) 21.4 [13.9-29.2]
ASA
I 3 (4%)
Il 29 (35%)
1 46 (55%)
\% 5 (6%)
nan 5 (6%)
HR (beats/min) 86 [ 46-141]
MAP (mm Hg) 67.7 [32-109]
MVR (RC/min) 14 [8 — 23]
HR/MVR (beats/RC) 5.9 [2.6-12.1]

differential (o) and proportional (1-B.) bias were detected which increased
when higher numbers of respiratory cycles were included. (pPPV1: 3o = -0,04
(-0.1, 0.02), 1-B1 = 0.00 (0.00, 0.01), pPVVs: Bo=1.64 (1.43, 1.86), 1-B1 =0.17
(0.14, 0.19)). Precision decreased for higher values of BLUP and decreased,
as opposed to the ‘Individual RC PPV’-class, even further with increasing
numbers of included RC. (pPPVi: oo = -0.11 (-0.14, -0.08), a1 = 0.05 (0.05,
0.05), pPVVs: a0 =0.21 (0.13, 0.30), o, = 0.06 (0.05, 0.06)).

The ‘Time window based PPV’-class methods to calculate PPV showed
increasing proportional bias that, in contrast to the ‘Pooled RC PPV’-class,
diminishes with inclusion of longer time windows. (tPPV1,: 1-, =-0.08 (-0.09,
-0.06), tPVV60: 1-3; =-0.01 (-0.01, 0.00)). Precision showed a similar trend as
the ‘Individual RC PPV’-class methods. (tPPVi2: oo = -0.43 (-0.49, 0.38), a1 =
0.07 (0.07, 0.08), tPVVgo: 0o = -1.66 (-1.78, -1.55), o, = 0.06 (0.05, 0.07)).
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Figure 5.3: Bias plots and Precision plots of all the method grouped per PPV-class.
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B. P (BLUP| measured PPV)

Based on the model with imputed missing values, densities for the predicted
BLUP given a specific measured value using the iPPV3 method could be
determined. These densities were calculated for measured values ranging
from 9% to 14% and can be found in table 5.3.

C. P (ABLUP| Ameasured PPV)

Based on the model with imputed missing values, and after contrasting the
densities of the predicted BLUP-distributions, expected real underlying
changes could be sampled. These densities were determined for an absolute
change from 0.5 % (9.5 % vs 9 %) to 3.5 % (12.5 % vs 9 %) in aliquots of 0.5 %.
(See table 5.4)

The chance for detecting a real increase was determined and ranged from
0.664 to 0.997 and from 0.641 to 0.987 (for a measured absolute increase of
0.5 to 3.5% in iPPV3 and tPPV;s respectively). (See Table 4)

Observed value of P(BLUP | measured PPV)
PPV (%) iPPV; tPPVis
9 7.5-10.7 7.6-11.6
10 8.4-11.8 8.6—-12.8
11 9.4-12.8 9.4-13.8
12 10.2-13.9 10.3-15.1
13 11.1-14.9 11.3-16.2
14 12.0-16.0 12.1-17.3
15 12.8-17.1 12.9-184

Table 5.3: P(BLUP|measured PPV).
Distribution of the predicted value of BLUP given a measured value of PPV for two
methods: iPPV3 and tPPVys. Distribution is expressed as high-density interval (HDI). HDI
determined as the 95% probability mass.
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Measured P(ABLUP[ AiPPV3) P(ABLUP >0| AiPPV;)
change in iPPV;
0.5 -1.78-2.82 0.664
1.0 -1.34-3.31 0.797
1.5 -0.886 —3.82 0.891
2.0 -0.396-4.35 0.948
2.5 0.123-4.98 0.978
3.0 0.461-5.38 0.991
3.5 0.954-5.89 0.997
Measured P(ABLUP| AtPPV;5) P(ABLUP >0] AtPPV;s)
change in tPPVs
0.5 -2.29-3.38 0.641
1.0 -1.9-3.95 0.758
1.5 -1.41-4.48 0.852
2.0 -0.93-5.11 0.923
2.5 -0.49-5.59 0.953
3.0 -0.10-6.15 0.975
3.5 0.44-6.73 0.987

Table 5.4: P(ABLUP| AmeasuredPPV).

Distribution of the predicted BLUP changes given a measured change in PPV values for
two methods: iPPVs and tPPV1s. Distributions are expressed as expected value and high-
density interval (HDI). HDI is determined as the 95% probability mass. P(ABLUP >0 |
AiPPVs): the chance that the measured change in iPPVs is a real increase in BLUP.
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Figure 5.4: Distribution of imputed models
Left hand side: Distribution of P(BLUP| measured PPV) for 7 different measured values
of PPV. Vertical line as reference of the measured value ordered from 9% to 15%.
Right hand side: Distribution of P(ABLUP| measured APPV) for 7 difference. Bold
vertical lines: measured APPV ordered from 0.5% to 3.5%. thin vertical line: reference
through the origin. Green lines: iPPVs, Red lines: tPPVs
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5.5 Discussion

In this study we estimated the measurement error for 3 conceptually
different approaches to calculate PPV. Although all investigated methods
basically use the same formula to calculate PPV, we identified 3 variants in
the literature in how different methods handle and define the observation
window on which this formula is applied. A first class of methods were based
on a fixed number of respiratory cycles (RC). PPV is calculated for each
individual RC before averaging in the ‘Individual RC PPV’- class (iPPV).2*In the
‘Pooled RC PPV’-class (pPPV), on the other hand, all included PPs are pooled
before applying the formula once?® (see figure 5.1). We further investigated
another method found in the literature that bases its observation window on
a fixed time-period, regardless of the number of RCs contained in the chosen
time frame. (‘Time window based PPV’-class (tPPV)??).

All studied methods had some degree of measurement error. The whole
spectrum of measurement errors was found over the studied methods (see
figure 5.3). In short, pPPV-methods systematically produced higher values
compared to the corresponding values obtained with the iPPV-methods. The
discrepancy was larger for higher values of PPV. Alongside this bias, the
precision of the pPPV-methods was lower in comparison to the iPPV-
methods. This difference was even more pronounced for the methods that
include more RCs. Opposing effects were found for the ‘Time window based
PPV’-class. In these methods, a decreasing bias and an increasing precision
with longer observation windows were identified.

Our findings are in line with previous reports. Kim et al, using the pPPV-
methods, observed that the measured values of PPV increased with longer
sampling duration. This effect seemed maximal with 5 included RC’s.1%%’
Derichard et al, using a commercially available monitor based on an algorithm
closely resembling tPPV, found that these automated values of PPV closely
correlated with the corresponding iPPV; values, but tended to overestimate
them.'” The same monitor was used by Cannesson et al who reaffirmed the
correlation between iPPV; and the automated values. Their Bland-Altman
analysis, however, revealed an agreement of 0.7% (+/-4.4%) (mean bias +/-
SD).8

Most studies comparing different measurement methods use Bland-Altman
analysis. For this study, we did not consider this appropriate. Firstly, multiple
methods using a varying number of replicate measurements, are compared
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with each other. Along with the expected proportionality in bias and
precision, this warrants the use of adapted Bland-Altman methods that limit
the interpretations of study results.?> But most importantly, our research
question isn’t answered by Bland Altman analysis.2® We did not investigate
interchangeability between methods, instead we aimed to assess bias and
precision for each individual method. For this reason, we used a Bayesian
framework based on the work of Taffé.?® The advantage of this lies in the fact
that knowing the uncertainties of (each) measurement, enables to
decompose the propagation of these measurement errors into the analysis,
rendering a more appropriate interpretation of the results and application in
clinical practice. A reliable quantification of these uncertainties for each
measurement method would make it even possible to (partially) correct for
them.”’

4.1 Importance of the results

Neglecting the uncertainties of a measurement may have a profound impact
on data analysis and subsequent study results.

Firstly, it is known that adding error to a predictor not only induces
uncertainty to its prediction but can also cause bias (a phenomenon known
as regression dilution or regression attenuation).?®?® This particularly applies
to studies using baseline PPV as a predictor for fluid responsiveness. The
neglected measurement uncertainty in PPV measurements (predictor) and in
Cardiac Output changes (outcome) probably accounts for some part of the
grey-zone, a concept first described by Cannesson et al.> Interestingly, the
simulations in our study showed that the 95% credibility interval of the
observed iPPV; for a real PPV of 12% ranged from 10.2% to 13.9%, which is
in close resemblance with optimal threshold and the original grey zone found
for PPV (12% (9%-14%)).>

Secondly, when optimal thresholds from different studies are compared, the
specific bias and precision of the used methods, should be accounted for.
Finally, for studies investigating small changes in PPV (e.g. tidal volume test
101129) 35 a predictor for fluid responsiveness, the impact of precision is of
even greater importance. Our simulations show that small difference up to
1.5% absolute change, may not be reliably detected. Because such an
observed absolute raise in PPV may in fact have a 15% chance of being an
actual decrease in PPV (see table 5.4). In their study, de Courson et al, also
cautioned that small changes in PPV may be difficult to detect reliably.*° In
contrast to our study, their methodology to estimate the least significant
change, did not account for heteroscedasticity. The problem of detectability
has already emerged in some earlier studies looking into predictors for fluid
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responsiveness.3>2 These authors had to adjust the calculated optimal cut-
off of their predictor, because it fell below the sensitivity of the monitor they
used.

Besides the statistical implication of accounting for measurement error, this
obviously is important for clinicians. Unaware of the bias of the displayed
values on their specific monitors, they might have been using different
thresholds to administer fluid than the protocols they thought they were
following.

4.2 Limitations

There are some limitations of our study. We used a full Bayesian model based
on the work of Taffé.2® This model has several advantages; its flexibility in a
repeated measures study design, the ability to compare bias and precision
between different methods, the possibility to model both bias and precision
in function of estimated underlying real values and the intuitive visualization
with distinct plots. The main limitation, however, is the fact that these
estimated underlying real values are based on an arbitrary reference method.
The consequence is that all reported biases should be interpreted as the bias
relative to the reference method.

In our analysis we choose iPPV; as the reference method in line with the
original Taffé method.” Because both the differential and proportional bias
of iPPV3, the most frequently used method in clinical studies, are minimal,
this choice seemed acceptable to us. Another limitation is the fact that the
impact of HR/MVR, a known factor impacting prediction capabilities of PPV33
, on bias and precision was not assessed. Lastly, the time-based models (tPPV)
are only one example of algorithms used in clinical monitors. The exact
algorithms used in nowadays monitors to automatically calculate PPV are not
publicly available and therefore could not be studied. Therefore, our study
can only underline the importance of these neglected features when using a
device in clinical practice or in a research setting.

In conclusion, we showed that all methods that calculate PPV come with
varying degrees of measure error. Although neglected, accounting for bias
and precision of each method may have important implications and may help
explain important concepts, like the grey zone of prediction and the minimal
detectable change of PPV, to guide perioperative fluid management.
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In this thesis, we explored the applicability of Pulse Pressure Variation, a
dynamic filling parameter, to predict fluid responsiveness in clinical practice.
More specifically, we addressed the 2 concrete challenges put forward in
chapter 2:
- Isit possible to develop a new dynamic filling parameter that can be
used in patients with atrial fibrillation?
- What is the intrinsic measurement error associated with the clinical
assessment of PPV?
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6.1 Discussion

6.1.1 Objective 1: PPV and Atrial Fibrillation.

Dynamic filling parameters are diagnostic tests that predict the change in CO
in response to a fluid challenge, from the magnitude of hemodynamic effects
induced by positive pressure ventilation. PPV is one of the best studied filling
parameters in this context. The development of all new diagnostic tests (like
PPV and biomarkers...) consists of different chronological phases * :
- Phase 1: Discovery — proof of principle
- Phase 2: Validation: evaluation of predictive (or diagnostic)
properties
- Phase 3: Usefulness: Assessment of incremental value
o when added to existing clinical prediction (or diagnostic)
tools.
o when added to clinical pathways.”

As depicted in figure 6.1, research on PPV has passed all 3 phases: After
decades of physiologic research into cardiopulmonary interactions?, PPV and
other variants of dynamic filling pressure were proposed (Phase 1).> Soon
after the introduction of the fluid responsiveness concept, dozens of
validation studies were published and bundled in a first meta-analysis in 2009
(Phase 2).* Thereafter, dynamic filling parameters were implemented in the
hemodynamic management protocols of interventional trials (Phase 3).°
Although PPV showed to be a reliable predictor for fluid responsiveness, it
was immediately clear that this reliability can only be expected when certain
pre-requisites (like closed chest-conditions, lack of spontaneous breathing
efforts, TV >= ml/kg, regular heart rhythm...) are met. Such limitations
undermine the applicability in clinical practice ®° and probably partially
explains some of the mixed phase-3-results.>!!

* This classification of chronological phases is based on the process described by Soussi et al
1 for studies on biomarkers used in perioperative medicine and critical care. However, we
adjusted their classification slightly by adjusting the name of each phase and expanding
phase 3 by adding the clinical pathway. These adjustments were based on a previous
publication of Ray et al.2¢
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The Functional Hemodynamic Tests (FHT) (like Passive Leg Raising Test (PLR)
and Tidal Volume Challenge (TVC)) were developed to overcome some of
these pre-requisites (e.g., the ventilator setting restrictions, spontaneous
breathing). Studies on these tests are currently in Phase 2 of the development
scale. A varying number of small studies were conducted to assess the
prediction properties of these FHT’s. Larger studies are scarce and
interventional studies implementing these tests in a clinical pathway are
lacking.

While FHT address primarily the ventilation component, until now little
attention has been directed towards the heart rhythm issue. Exactly this point
was addressed in the first part of our research. We focused on overcoming
the need for a regular electrical and mechanical cardiac activity, i.e., a steady
heart rate and rhythm.

Up to now, variations in PP were measured assuming only 1 determinant of
variation, namely mechanical ventilation. The interaction between the
regular swings in intrathoracic pressure associated with mechanical
ventilation and a regular heart rhythm provided a unique setting to assess
fluid responsiveness. However, the traditional technique used to quantify this
variation becomes meaningless when an additional source of variation comes
into play: the irregular beat-to-beat changes caused by the chaotic timing of
individual heartbeats in atrial fibrillation. Our challenge was to filter out these
effects and to quantify the isolated effect of mechanical ventilation.

As the development of VPPV, our new dynamic filling parameter, was
challenging, the 2 studies presented in chapter 3 and chapter 4 can be
classified as Phase-1-research. The process can be broken down into 5 steps:

Step 1: Predicting individual PP’s due to an irreqular heartbeat.

In Chapter 3 we showed that a mathematical model can accurately predict
individual PPs in patients during an apneic period. This model is based on the
length of the cardiac cycle (measured as the RR-interval) of the 2 preceding
heartbeats.

Step 2: Does ventilation increase variations in PP in ‘a dose response’ way?
In Chapter 3 we also showed that when patients with AF were subsequently
ventilated, deviations from the apneic model were related to the magnitude
of the tidal volumes (TV) used. These two properties of this model make it a
good basis for further development. However, two (practical) problems still
need to be accounted for:
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- The need for an apneic reference makes it impractical. One of the
advantages of classic PPV, is that a monitor can easily determine it
automatically and continuously without the need for a manual
change in ventilator settings.”

- In step 2, the deviations from the step 1 model were used to assess
the magnitude of the effect of mechanical ventilation. Unfortunately,
this approach does not quantify the magnitude of the effect of MV
relative to some kind of reference PP (like the classic PPV
measurement does). As such, it does not have the intuitiveness of a
percentual change and makes this method unsuitable to develop a
parameter.

In chapter 4 these problems were addressed.

Step 3: Predicting individual PP’s due to an irreqular heartbeat and
mechanical ventilation. In chapter 4 a new model is used that incorporates
the principles of the mathematical model of step 1 alongside other
predictors. To do this a General Additive Model (GAM) was used. (See Figure
4.2, chapter 4). This multivariable prediction model can combine different
predictors without (or with minimal) specification of the exact underlying
relation (splines). The shapes of these splines are locally calculated from the
data and can vary from simple to complex mathematical relations (e.g. linear,
sinusoidal, exponential...). We showed that a gam model based on the RR
intervals of the two-preceding heartbeats, a predictor for the timing of the
respiratory cycle and a predictor for slow changes in PP can reliable predict
PPs of the individual heartbeats, without the need for an apneic period.

Step 4: Define a measure that quantifies the ventilation induced variation in
PP: VPPV.

From this new model in step 3 the mean PP (the intercept of the model) and
the maximum and minimum PP from the ventilation function can be
determined. These 3 values can be used to calculate VPPV:

* All FHT's (PLR, mini-FC, TVC, EEQOT) have the disadvantage of losing the automaticity of a
monitor that provides a continuous parameter. All FHT’s demand some action from a
bedside care-provider. Not only does this make the test laborious to perform, undermining
its user-friendliness, it also has the risk that at each active step measurement errors may
theoretically undermine its accuracy.
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VPPV — VPP, 0 — VPPpin _ VPP ax — VPPpin
PPmean ﬂo

The advantage of this approach is the close resemblance to the classic
formula for PPV.

Step 5: Does VPPV behave like a dynamic filling parameter in response to a
fluid bolus? In the last step of the development/discovery phase of VPPV we
showed that VPPV, in contrast to classic PPV, decreases in response to leg
raising in patients with active AF. This decrease in VPPV, after an endogenous
fluid bolus, was especially apparent when baseline VPPV was high. This is
similar to the physiologic response quantified by PPV in patients with normal
sinus rhythm.,

After these 5 steps, we conclude the phase-1-research in development of a
new parameter based on cardiopulmonary interaction, to predict fluid
responsiveness in patients with an irregular heart-rhythm. For the first time
such a parameter is identified and ready to be tested in next phase research.

6.1.2 Objective 2: Measurement error of PPV

So far, most of the phase-2 research on PPV as diagnostic/predictive tool, has
focused on the diagnostic aspect of validation studies. Optimal cutoffs for
maximal diagnostic performance, measured as maximal sensitivities,
specificities and likelihoods to predict fluid responsiveness have been
determined and compared. Another aspect of validation studies, however,
has been neglected systematically.” The analytic performance, consisting of
the measurement error and reproducibility of PPV has been ignored in most
of these studies. Although older studies showed that PPV values, obtained
with commercially available devices, were not always interchangeable with
manual calculation, later research ignored this source of uncertainty. In

" In 1997 Shaah et Hoover?” proposed two kinds of sensitivity and specificity, in their
‘medical writings’ on the correct reporting and interpretation of biomarker studies. The
analytical and the diagnostic sensitivity and specificity. The analytical aspect concerns
measurement error and reproducibility. They define analytical sensitivity of a biomarker
essay as the smallest amount of a substance that can be accurately measured in a biological
sample. Analytical specificity as the ability to measure a particular organism or substance,
rather than another, in a sample. As opposed to the diagnostic sensitivity (the percentage of
persons who have a condition of interest with a positive result) and diagnostic specificity
(the percentage of persons who do not have the condition with a negative test.)
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addition, even more variants on the method to quantify PPV were introduced
over time assuming that all of these would provide the same result.
Inevitably, each method comes with its specific measurement error and its
associated impact on the diagnostic performance.

Ideally, the analytical performance of a test should have been assessed prior
to the study of its diagnostic performance.

In the absence of data on analytical performance, we conducted a study to
systematically determine the measurement error of different methods, found
in the literature, used to assess PVV. Based on a sample of more than 500
recordings from patients undergoing liver transplantations provided by the
open-source VitalDB- database, we showed that all studied methods come
with some degree of error, expressed as bias and imprecision. Based on these
results we were able to simulate the impact of such uncertainties on the
diagnostic value of PPV, i.e., the accuracy to determine the threshold values
of PPV and of changes in PVV (cfr Tidal Volume Challenge test).

For this purpose, we introduced two new methodological approaches in our
research: one being a new statistical technique and the second characterized
by the modern trend to data sharing and open research communication.

A. A new analytical/statistical approach: Bayes.

In Anesthesia and Critical Care literature, most studies comparing
measurement methods or techniques, have adopted a technique described
by Bland and Altman to overcome the limitations of regression analysis.?? In
assessing the limits of agreements, or the range of values within which most
differences between two measurements (of the same variable) are likely to
fall” , the Bland-Altman analysis aims at estimating the interchangeability of

* More specifically, the Bland Altman analysis is a graphical method that depicts the
difference between the measurement of two methods in function of the mean of the two
measurements. The region of these (expected differences) is described in function of the
bias (the systematic difference between the two measurements, depicted as the center line)
and the limits of agreement (the range/ width of the rectangular region around the bias
including 95% of all observed differences.) Depending on a prespecified bias and limits
of agreement criterium, the two assessed methods can be found interchangeable
or not. Different modifications have been publicized ever since, to be able to apply
in different study designs.?2°
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two imperfect methods.” For the validation of hemodynamic monitors,
especially monitors using various physical principles to determine cardiac
output, the Bland-Altman analysis is widely accepted as the new reference
method.*?

In our work, interchangeability between different methods to calculate PPV
was not of primordial interest. Instead, we intended to estimate the
measurement error of each method individually” and then model the impact
of the uncertainty for each measurement in the clinical decision process,
when assessing fluid responsiveness. Bayesian statistics are especially well
suited for this purpose. In contrast to the popular frequentist statistics, the
Bayesian approach uses a framework and mathematical method that
inherently accounts for uncertainties in all levels of the analysis.* As such this
approach is especially appealing as it is able to model the impact of these
uncertainties in a decision model. (= propagation of measurement
error/uncertainty).

B. Tapping into the potential of Open-Source data analysis.
Since the conception of the study, we felt it would be a big step forward to
conduct research in the spirit of open-source sharing of data and scientific

" Interchangeability is assessed based on prespecified bias and limits of agreement criteria. It
remains a difficult task to define these criteria. Devices that measure temperature, blood
pressure, cardiac output, or serum troponin, all need specific criteria. Specific criteria that
need to define how much interchangeability is to be clinical reliable. For comparing cardiac
output monitors there are accepted bias and limit of agreement criteria since the publication
of Critchley and Critchley.13 It should be pointed out however, that these criteria were based
on the most basic Bland Altman analysis assuming no repeated measures, constant bias and
variance.

T It is important to notice that the limit of agreement is a measure for the precision of the
two methods combined. Individual bias or precision is not calculated with the Bland Altman
method.

* The difference between the frequentist and the Bayesian framework is essential. As a
‘micro’ introduction, one can say that frequentist theory is essentially based on hypothesis
testing: P(D|Ho) = the probability for the observed data of the study (or more extreme
values) provided that the null hypothesis is true. (This is also the definition for the p-value of
an applied test-statistic.)

In contrast, Bayesian estimate P(H|D): the probability of the hypotheses given the observed
data. It does so by applying the Bayes theorem: P(H|D) o P(D|H) P(H). alternatively: the
posterior probability of the different hypotheses (P(H|D)) is proportional to probability of
the observed data for each considered hypotheses (P(D|H) = likelihood) corrected for the
prior knowledge of the probability of the hypotheses (P(H)). For a more detailed discussion
for the use of Bayesian statistics in anesthesia research we recommend two recent reviews
by Itrona et al 30 and Ferreira et al 3.
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results. Our experience with open-source software facilitated our acceptance
into the open access community and gave access to a valuable online
database (VitalDB).1* Using the online available python-scripts!® we were able
to data-mine into VitalDB. Our dataset and the R codes, used in the analysis,
are made publicly available to the scientific community on the GitHub
platform. This enables other research teams to verify our results with open
access to all methodological details and data sets. It also allows peer-review
to continue beyond the official peer review and publication of a study in
traditional scientific media. Finally, we belief that this modern scientific
attitude is a strong basis for open collaboration in a scientific network of
kindred spirits. Open access to our code overcomes a lot of barriers for
colleagues interested in testing and optimizing our Bayesian model. Although
questioned by some’®, we feel this way of working offers a lot of possibilities
and should be promoted more in order to maximize the efficiency of
research.

6.2 Future Perspectives

Before embarking in the logical phase 2 research part for VPPV and before
setting up a classic fluid challenge study to assess the prediction capabilities
of VPPV for fluid responsiveness, some insights gained in the previous
chapters, may shape the approach to such a study and future research.

6.2.1 Measurement error is ubiquitous and should be
accounted for...

The archetypical fluid challenge study-design can be found in figure 6.2.
Essentially at the beginning of the study two measurements are taken: The
predictor and the baseline cardiac output. After a certain amount of fluid is
given to the patient, the cardiac output is measured again, and the effect of
the fluid challenge (the difference in cardiac output) is calculated.
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Copre COpost

Fluid loading ;

Figure 6.2: The minimal Prototypical fluid challenge study design. At baseline and after
stabilization, cardiac output and the predictor(s) of interest are measured. After
performing a fluid challenge and after stabilization cardiac output is measured again.
Difference in cardiac output is predicted in function of the predictor. Most studies use a
method to determine the best cut-off value of the predictor to predict a predefined
minimal percentual raise in cardiac output (E.g., 10 or 15%). CO = Cardiac Output, t= time

The data analysis consists of a procedure to assess the ability of the predictor
to predict the effect. A schematic representation of this procedure can be
found in figure 6.3. This resembles the approach of the research so far: PPV
or changes PPV induced by some kind of maneuver (e.g., tidal volume test)
at baseline were used to discriminate those patients that had their cardiac
output raised by a certain percentage after fluid loading.

However, when we take a closer look to the study-design, there has been a
discrepancy between how results were interpreted (See figure 6.3 Scenario
1) and what was exactly studied (See figure 6.3 Scenario 1). In reality, the
ability of the measured value of the predictor to predict the measured effect
was studied. This means that the measurement error of each device has an
impact on this analysis. Using measurement methods that are imprecise risk
obscuring the predictive power of the real predictor-effect relation. In
chapter 5 we showed that this concern for PPV as predictor, or as part of a
FHT, is valid. The measurement error for VPPV cannot be determined yet
using our Bayesian model, as for the moment, we do not have an alternative
method to compare.

Concerning the measurement of the effect: there is vast literature on the
measurement error of cardiac output monitors. In clinical practice, and in
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incorporated technology, algorithms and in invasiveness. The measurement
error of these devices can be substantial and is sometimes even
problematic.}”*® When planning for a phase 2 study in patients with AF the
measurement error of these devices becomes even more important.?®

What is the way forward then?

In clinical practice the relevant question boils down to: ‘what is the ability of
the measured (V)PPV to predict the real impact of fluid loading on cardiac
output?’ (See figure 6.3 scenario C). To analyze this problem, some additional
issues need to be clarified:

- Obvious first principle is the need to use research devices that are as
accurate as possible. In this specific setting of AF, this applies
especially to the measurement of cardiac output.

- However, minimizing the measurement error is not enough. More
advanced statistical methods, like regression calibration, multiple
imputations or Bayesian hierarchical models, are able to correct for
measurement error and to provide a corrected, more reliable,
estimate of the real effect.?%%

- When planning for the use of these more advanced statistical
techniques, more fundamental questions deserve reconsideration.
Why did we start defining the effect of fluid loading on cardiac output
as a binary outcome? Is the classification into responders (e.g., a raise
in CO of > 15%) and non-responders really more intuitive? Or would
an interval of the most likely expected changes in CO for an individual
measured (V)PPV value provide more information to make clinical
decisions? © Why are (almost) all fluid responsiveness studies
conceptualized as a univariate prediction model? It is quite unlikely
that one predictor can perfectly assess fluid responsiveness in all
patients. Not only is it more likely that dynamic filling parameters
have different predicting capabilities in different patient populations,
but it is also very probable that other predictors and the interaction
between them, resembling the different mechanistic pathways in

* Dichotomization of continuous variables should be avoided. Altman already advised against
this practice since the 90’s of the past century. It should be discouraged because “...it wastes
information” 3233: Why would a patient with a PPV of 9% and patient with 15% differ as
much as a patient with a PPV of 9% and a patient with a PPV of 25%. Splitting up the
predictor in two categories clearly ignores that the expected effect raises with increasing
values of measured PPV. Likewise, are we sure that a patient with a raise of 14% in cardiac
output really differs from a patient with a measured change in cardiac output of 16% after
fluid loading?
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hemodynamics, can increase the accuracy of predicting fluid
responsiveness.

In conclusion, validation of VPPV to predict fluid responsiveness comes with
specific methodologic issues. Identification of these analytic hurdles have
unraveled the weaknesses of currently used methods. New, more modern
methods should not only make it possible to validate VPPV, but they might
also create a better paradigm to translate their and older results into the
clinical setting.

6.2.2 VPPV vs PPV

VPPV was developed as an alternative for PPV when patients have an
irregular heart rhythm. If proven accurate in this specific situation, there are
at least 2 potential applications that will further expand their use in clinical
practice.

The combination of FHT’s with VPPV would make it possible to overcome
multiple restrictions for the correct use of dynamic filling parameters.

Tidal Volume challenge, one of the FHTs proposed to use when low TVs are
applied perioperatively, is based on changes in PPV.2 Theoretically, for
patients with an irregular heart beat the same method can be used replacing
PPV with VPPV. Other FHT’s like PLR and MFC do not use PPV. These tests use
changes in cardiac output induced by a change in body position or after a mini
fluid bolus to predict the response when a large(r) fluid bolus is given (see
figure 1.11). Mallat et al however, described a variant of both PLR 2* and MFC
25 py replacing the change in CO by PPV. Although their results are promising
and suggest that this modification of the test might be more accurate’, their
results need to be confirmed.

* In their first study, Mallat et al?> showed in their ROC, that the AUC of APPVqo (the
absolute change in PPV after a mini fluid bolus of 100ml) was significantly higher than the
AUC of ACClygo (the change in cardiac output after the mini fluid challenge), 0.92 (95% Cl:
0.81-0.98) vs 0.78 (95% Cl: 0.80-0.97). In their second study 24 on APPVpz ((absolute and
relative) change in PPV after the PLR maneuver) the comparison with classic PLR test
(ACClpig) was not reported. This higher accuracy can probably be partially explained by the
difference in measurement error between PPV and (small) changes in cardiac output. It has
been shown that different monitors come with different minimum changes in CO that can be
confidently picked up. For some monitors the change in CO imposed by a bolus of 100ml
cannot be reliably measured. 34
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With VPPV we have for the first time a valid alternative to (potentially) predict
fluid responsiveness in patients with AF. If proven accurate, PPV and VPPV
will be at our disposal, as a single predictor or incorporated in an FHT,
depending on the heart rhythm of the patient: sinus rhythm or atrial
fibrillation. However, an important question in this context is whether sinus
rhythm and AF are indeed to be considered as two distinct heart rhythms.”
To explain this seemingly contradictory statement, two imaginary patients
with AF are presented. It is easily understood that the degree of irregularity
can differ between these two patients. A simple method to quantify the
irregularity of AF is to determine the range of RR-intervals observed during a
certain observation period.” The more furiously the heart rate fluctuates, the
wider the distribution of the observed RR-intervals. The narrower the range
of RR-intervals, the lower the degree of irregularity. Taken to its lower limit,
this ultimately results in a very narrow range approaching O... In this sense a
regular rhythm can be seen as a special case of irregular rhythm.* This is easily
visualized in our GAM model (See: figure 6.4)

* It is evident that there is a difference between a sinus rhythm and atrial fibrillation. There
are clear electrophysiological criteria (absence of P-wave on the ECG) and functional
characteristics (the absence of the atrial kick) that discern these two rhythms from each
other. It is not clear however if these differences have an important role within the context
of fluid responsiveness. Especially as it has long been known that for example with aging,
atrial dysfunction is present in both SR and AF patients. 3536

™ A more sophisticated method to quantify irregularity can be found in Keidar et al. 37 In
their method to detect AF one of the predictors they use is ‘variability’ defined as standard

deviation of the Modified entropy scale (MESC) over the mean of beat intervals (BI). In its
OMEsc® _ 98I

BI BI
* Seeing a sinus rhythm as a low degree irregular rhythm is not that abstract. Heart rate
variability (HRV) in sinus rhythm is even a physiologic phenomenon. It is the result of the
balance between the sympathetic and the parasympathethic nervous system. Different
medications used during anesthesia have an impact on this equilibrium. HRV is sometimes

investigated as a prognostic factor, and it is used to measure nociception; 38

most simple form (MESC grade=0) this becomes:
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This makes our model especially attractive as it not only has the potential to
calculate the ventilation induced changes for the whole range of irregular
rhythms (including a sinus rhythm), these, calculated VPPV values in case of
a regular heart rhythm should closely relate to the PPV values.” If proven
accurate, we did not find an alternative for PPV in a special circumstance,
instead we potentially developed VPPV, a new standard method to quantify
the impact of MV on variation of PPs. PPV might well be a special case within
the spectrum of VPPV and not the other way around!”

* Our model can be written as: PP = By + f(RRy) + f(RR_,) + f(Ventilation) +
f(Time) + €
In figure 6.4 it can be seen that in this patient with SR:
1. Therange of RRO and RR-1 is minimal (compare with fig 4.2 in AF)
2. The impact of the RRO, RR-1 and Time function in the prediction model is limited.
For all predictors within the observed range, the added value to predict PP is
minimal.
3. Ourformula can be rewritten as:
PP = By + 0+ 0+ f(Ventilation) + 0 + ¢
PP = By + f(Ventilation) + €
4. This makes the calculation of VPPV similar to PPV:

VPPV = 1]PPma.x_UPPmin vs PPV = PPmax_PPmin
,8() (Ppmax - PPmin)/Z

T2 remarks are in place here. First, as explained above, a sinus rhythm is not necessarily
completely regular. The ability to account for this irregularity has the potential for VPPV to
be more accurate in SR than PPV itself. It is, however, not known if this low-grade irregularity
that has been neglected when calculating PPV, is important.
Secondly, so far, we have only considered atrial fibrillation when irregularity was discussed.
Other forms of irregular heart rhythms like extra systoles and AV blocks have not been
included in our research. It remains to be proven that these arrythmias, sometimes
categorized as regular irregularities 37, can be handled by our model.
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“oet dad ier nog lange goat deurn,
goat dad ier rap gedoan zin.”

“Als het hier nog lang zal duren,
Zal het snel gedaan zijn.”

West-Vlaamse wijsheid



Summary — Samenvatting



158 Chapter 7

English

During surgery, a patient may lose fluid for various reasons. In addition to
blood loss, there is also fluid that evaporates from open wounds, and patients
usually do not drink or eat in the last few hours before an operation.
Therefore, it is challenging for an anesthesiologist to correct this deficit.

Too small volumes of circulating fluids cause the blood flow that the heart
pumps around to become insufficient, leading to a lack of oxygen supply to
various organs. However, if too much fluid is administered, fluid can
accumulate in the tissues, causing edema, which can also have adverse
effects on a patient.

To assess whether administering fluids will increase the CO, an
anesthesiologist can use the so-called dynamic filling parameters. During
surgery, under general anesthesia, a patient is mechanically ventilated. The
positive pressure insufflation used for this purpose affects heart function. The
magnitude of the impact of positive pressure ventilation has a predictive
value on the chance that extra fluids will increase the cardiac output: the
greater the effect, the greater the chance. The most well-studied dynamic
filling parameter is PPV, which is the percentage change in blood pressure
during different ventilation cycles. These parameters, such as PPV, are the
most reliable as long as certain conditions are met. An important pre-
requisite is the need for the patient to have a regular heartbeat. In patients
with an irregular heart rhythm, such as Atrial Fibrillation (AF), there are two
causes of blood pressure variation: regular ventilation and the chaotic
heartbeat, which cause blood pressure to vary from beat to beat. Therefore,
the traditional way of calculating PPV is no longer applicable.

In the first part of our research, we looked for a way to isolate the impact of
the different causes of blood pressure changes in patients with AF. For this,
we first tested a method that can predict the influence of an irregular rhythm
on blood pressure. It turns out that based on the length of the two previous
beats (RRO and RR-1), the blood pressure of an individual heartbeat can be
retrospectively predicted.

In a second study, we incorporated this method into a model that can
simultaneously predict the impact of different causes of beat-to-beat blood
pressure changes, both ventilation and heart rhythm, in patients with AF.
Based on this model, a new parameter, Ventilation-induced Pulse Pressure
Variation (VPPV), can be calculated. This new parameter is the calculated
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isolated percentage change in blood pressure caused by ventilation only. In
the last step of our research, we examined the changes in VPPV caused by
altering the circulating blood volume. After these initial studies, we can
conclude that we have found a way to measure the different causes of blood
pressure changes. The reliability of VPPV in predicting increased flow after
administering extra fluids can now be tested in patients, both with irregular
and regular heart rates.

In the second part of our research, we focused on the measurement error of
PPV calculations in patients with a regular rhythm. It turns out that over the
years, different methods have been used in the literature. On the one hand
there are several ways to manually calculate PPV and on the other hand,
there are different commercially available measuring devices that each use
their own algorithm. Despite the fact that older studies showed such devices
do not always generate the same values compared to the original manual
method, very little research has been done on the measurement error and
the impact of such an error on the predictive value of PPV. In a third
publication, we systematically determined the measurement error of
different methods for calculating PPV in patients with a regular heart rhythm.
For this, we used the online open VitalDB database. Based on the data of the
patients in this database who underwent liver transplantation, we were able
to compare the PPV values calculated with different methods. Using a
Bayesian statistical model, we calculated the measurement error, split up into
bias and precision for each method, and we could simulate the impact of such
measurement errors on the reliability of the measurement values to predict
cardiac output changes. We can now conclude that the identified
measurement errors do indeed have an impact on the interpretation of the
results of some studies and on the use of these values in clinical practice.
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Nederlands

Tijdens een operatie kan een patiént omwille van verschillende redenen
vocht verliezen. Naast bloedverlies is er ook vocht dat verdampt vanuit open
wonden en is het zo dat een patiént de laatste uren voor zijn ingreep in
principe niets meer eet of drinkt. Het is dan ook geen sinecure voor een
anesthesist om dit tekort te corrigeren.

Een te klein volume circulerend vocht zorgt ervoor dat het debiet bloed dat
het hart rondpompt in het lichaam te klein wordt. Hierdoor kan er een
zuurstoftekort ontstaan in verschillende organen. Maar als er daarentegen te
veel vocht toegediend wordt, kan vocht zich opstapelen in de weefsels en
ontstaat er oedeem, wat ook nadelige gevolgen kan hebben voor de patiént.
Om in te schatten of het toedienen van vocht het hartdebiet zal verhogen,
kan een anesthesist gebruik maken van de zogenoemde dynamische
vullingsparameters. Tijdens een ingreep onder algemene anesthesie wordt
een patiént mechanisch beademd. De drukveranderingen in de longen die
hierdoor optreden, hebben een invloed op de hartfunctie. De grootte van de
impact van de positieve druk beademing heeft een voorspellende waarde of
extra vocht het hartdebiet zal verhogen: hoe groter het effect van de
positieve druk, hoe groter die kans. De best bestudeerde dynamische
vullingsparameter is ‘Pulse Pressure Variation’ (PPV), wat de procentuele
verandering van de bloeddruk is tijdens verschillende beademingscycli. Deze
parameters, zoals PPV, zijn de meest betrouwbare parameters zolang er
rekening gehouden wordt met enkele voorwaarden. Een belangrijke
voorwaarde is dat de patiént een regelmatige hartslag heeft. Bij patiénten
met een onregelmatige hartslag (zoals bij voorkamer fibrillatie, VKF) zijn er
twee oorzaken waardoor de bloeddruk kan variéren: (1) De regelmatige
beademing en (2) het chaotische hartritme dat ervoor zorgt dat de bloeddruk
slag-om-slag varieert. Hierdoor is de traditionele manier om PPV te
berekenen niet langer toepasbaar.

In het eerste gedeelte van ons onderzoek zijn we op zoek gegaan naar een
manier om bij patiénten met VKF, de impact van de verschillende oorzaken
van bloeddruk veranderingen te isoleren van elkaar. Hiervoor hebben we in
een eerste studie, een manier getest die in staat is om de invlioed van een
onregelmatig ritme op de bloeddruk te voorspellen. Blijkt dat op basis van de
duur tussen de twee voorgaande slagen (RRo en RR.;) de bloeddruk van een
individuele hartslag voorspeld kan worden.
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In een tweede studie hebben we deze manier geincorporeerd in een model
dat de impact van verschillende oorzaken van slag-om-slag bloeddruk
veranderingen, zowel door de ventilatie als door het hartritme, simultaan kan
voorspellen bij patiénten met VKF. Op basis van dit model kan dan een
nieuwe parameter, ‘Ventilation induced Pulse Pressure Variation’ (VPPV),
berekend worden. Deze nieuwe parameter is de berekende procentuele
verandering van de bloeddruk die enkel door de beademing veroorzaakt
wordt. In een laatste stap in ons onderzoek, onderzochten we de
veranderingen van VPPV veroorzaakt door extra circulerend bloedvolume. Na
deze eerste onderzoeken kunnen we besluiten dat we een manier gevonden
hebben die de verschillende oorzaken van bloeddruk veranderingen kunnen
meten. De betrouwbaarheid van VPPV om debietverhoging te voorspellen
voor het toedienen van extra vocht, kan nu getest worden, zowel bij
patiénten met een onregelmatig ritme als met een regelmatig ritme.

In het tweede gedeelte van ons onderzoek, hebben we ons geconcentreerd
op de meetfout van de PPV-berekening bij patiénten met een regelmatig
ritme. Blijkt namelijk dat er, door de jaren heen, verschillende manieren
gebruikt werden in de literatuur. Er zijn enerzijds verschillende manieren om
PPV manueel te berekenen en anderzijds zijn er verschillende commercieel
verkrijgbare monitors die elk een eigen algoritme gebruiken. Ondanks het feit
dat er oudere studies voorhanden zijn die aangetoond hebben dat dergelijke
apparaten niet altijd dezelfde waardes genereren in vergelijking met de,
oorspronkelijke, manuele manier, is er zeer weinig onderzoek gebeurd naar
de meetfout en de impact van zo’n meetfout op de voorspellende waarde van
PPV. Wij hebben in een derde publicatie, de meetfout van de verschillende
manieren om PPV te berekenen bij patiénten met een regelmatig ritme op
een systematische manier in kaart gebracht. Hiervoor maakten we gebruik
van de online open VitalDB database. Op basis van de gegevens van de
patiénten uit deze database die een levertransplantatie ondergingen konden
we de PPV-waardes, berekend met verschillende methodes, vergelijken. Met
behulp van een Bayesiaans statistisch model berekende we de meetfout,
opgesplitst in bias en precisie voor de verschillende methodes. Daarnaast
konden we ook de impact van dergelijke meetfouten op de betrouwbaarheid
van gemeten PPV-waarden, om hartdebiet verhoging te voorspelling
simuleren. We kunnen concluderen dat de geidentificeerde meetfouten voor
sommige methodes wel degelijk impact hebben op de interpretatie van de
resultaten van sommige studies en op het gebruik van deze waardes in de
klinische praktijk.
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APPENDIX:

[ op’pendiks, mv -es, -dices -iz, -disi:z]
A small, fingerlike pouch that sticks out
from the cecum (the first part of the
large intestine near the end of the
small intestine).
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LOC2 model

The LOC2 model is a local polynomial regression to predict PP based on RRg
and RR.;.

Cleveland first described the locally weighted regression or loess-function.®
It is a local regression, meaning that general regression is split up in multiple
analyses, performed on subsets of the total data. More specifically for each
individual data point a regression is performed, using the nearest data points.
All the included data in the local regression are weighted, proportional to
their proximity to the point being analyzed. For every point-analysis we used
a second order polynomial regression.

Eventually all the individual analyses are combined in a global function
covering the total data set.

This methodology is computational very intensive, but it has the clear
advantage that the fitting model is not restricted to one predefined type (e.g.
a second order polynomial regression, sinusoidal, exponential function or
combinations). This analysis is very flexible, within the dataset.

Specific determinants incorporated in our analysis

bandwidth — smoothing parameter — ¢

The proportion of the data that is used for every local fitting is to be defined.
This parameter determines the tradeoff between a smooth model and the
flexibility to predict individual points. When this parameter is set too small,
there is a high risk of overfitting (see figure 3.6) because eventually the
random error of the data becomes modeled. The bigger the span is set the
higher the risk for underfitting.

To find the optimal smoothing parameter, we performed a 5-fold cross-
validation for every patient. In this procedure, the data are randomly divided
into 5 subsets. Four of these subsets are used to calculate a set of models, in
which a range of different smoothing parameters are used (= the training
subset). In the next step, these different models are used to predict the
remaining subset (= the validation subset). These steps are repeated 5 times,
until every subset of the data was used as a validation subset. The smoothing
parameter with the best overall fit was used in the final analysis.
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Degree of polynomial regression was set at 2.

The traditionally tricubic weight function was used.

. 313
W= [1 - (DlSt/maxDist) ]

Figure A.1: Effect of changing the setting of the “smoothing” parameter in the calculation of

LOC2. A: overfitting. Detail of LOC2 during T1 of patient 1 when the span parameter was set

at 15%. B: optimal fitting. Detail of LOC2 during T1 of patient 1 when the optimal span was
set. RR intervals (ms), PP (mmHg).
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Principles of Splines

The individual functions used in our General Additive Model are natural cubic
splines. This is a specific type of spline. Splines are an elegant method to
perform a regression when not knowing the exact underlying relation
between independent and dependent variables. Hypothetically, this relation
can have all forms from linear to higher order polynomials, from exponential
to sinusoidal etc. This method has some specific characteristics. Spline
regression is a penalized, local, smoothing technique based on a cubic
polynomial regression.

1. Cubic polynomial

The basis for this method is the cubic polynomial:

f(x) = Bo + Prx + Box? + Pax?
2. Local

The cubic polynomial formula is not applied to the whole data set, but only
to a subset. Figure B.1 shows the individual data points of a 60s observation
period. For simplicity, only the relation between RR, and PP is considered.
In this example, the whole data set is divided into 9 subsets. The exact place
of the 10 boundaries (‘knots’) is based on the percentiles of the RR, values.
Each subset has an equal amount of datapoints. For each subset a cubic
polynomial is (locally) applied. So, the formula for a model with k knots can
be written as:

Bo1 + BraXi + Baaxi + Pa1x], ifky <x; <k,
y, = Boz + Bi2Xi + Ba2x? + Bs2xi, if ky <x; <ks
L
Boj—1 + Bri—1Xi + Bog—1x7 + Bap—1x}, ifky_q <x; <k
or as:

fi(x) = Bo, + Bujxi + Box? + Psjx}
lfk] < xi < kj+1
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3. Smoothing technique

If no constraints are placed on these 9 different cubic polynomial fits, the
resulting graphical display of the model would look like figure B.1 Right Panel.

There are at least 2 problems with this regression. First, these 9 individual
regressions are not continuous. An example of this is the transition at the 4th
and 8th knot. There seems to be a ‘jump’ in the regression function at RR =
698 msec and RRy =1034 msec. Secondly, in some knots the data seems to
be continuous, but the regression line has an overly sharp edge. This
phenomenon can be seen at the 6th knot (RR, = 870 msec). To overcome
these problems and optimize the smoothing properties of the model, the
following constraints are defined to the individual cubic polynomial fits. At
each knot the functions need to be continuous up to the second derivative.

filk;) = fira(k))
f’i(kj) = f’i+1(kj)
f"i(kj) = f"i+1(kj)

Some examples of such a fit can be seen in figure B.2.

If this set of restrictions for continuity, is also applied to the ‘exterior’ knots
(k1 and ki0), the spline becomes a cyclic spline.

f1(k1) = fo(kqo)
f1(ky) = f'9(k1o)
f"1(k1) = f"9(k10)

This technique was used for modelling the cyclic effect of ventilation on PP.
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4. Penalization

As can been seen in figure B.2, there are still multiple solutions to the
formula. The minimalization of the following formula is used to choose the
optimal fit, to find the optimum between overfitted (green) and underfitted
(blue) models.

> = fEy +4f fryde

This formula consists of 2 parts. On the left is the classical RSS (Residual Sum
of Squares). Minimizing this part of the formula leads to a model that has the
least overall prediction error but has the highest tendency for overfitting. The
right part of the formula measures for the impact of the higher-order
coefficients (second derivative) and counterbalances this tendency. A is a
penalty factor. Chosing a low A yields a model that is allowed to be ‘wiggly’.
Higher A’s shifts the model to less flexible versions, ultimately leading to a
linear function. There are different ways of determining the optimal A. In our
analysis we used the REML (Restricted Maximum Likelihood) approach.

useful further readings:

- James G, Witten D, Hastie T and Tibshirani R. An introduction
to Statistical Learning. Chapter 7. Moving beyond Linearity. P
265-302. 2017 New York, NY: Springer Science & Business
Media 2017. ISBN 978-1-4614-7137-0

- Wood N, General Additive Models. Chapter 5 smoothers
p195-246. 2017 Boca Raton, FL: CRC press (Taylor & Francis
Group) ISBN 978-1-4987-2833-1
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Sensitivity analysis

The median RR interval and its variation changed profoundly after PLR in
Patient 9. We do not know the exact reason why this patient developed an
AF with slow ventricular response. We excluded the data of this potential
outlier and repeated the analysis. The results of this re-analysis are given
below, alongside with the findings of the full data-set.

- The impact of re-analysis (excluding pt 9) on the difference between pre
and post PLR values:

Pre PLR Post PLR p-value

Full data set
VPPV | 9.9[0.1-29.9] 1.4 [0, 11.3] 0.014

PPV | 134 [14.5-197.9] | 36.8 [7.6—192.7] 0.019

Data set without pt 9
VPPV | 11.2 [7.5-18.0] 1.1[0-3.1] 0.014

PPV | 97.5[25.3-150] 48.2 [13.4-91.6] 0.020

- The impact of excluding patient 9, on the linear relationship between Pre-
PLR VPPV or classic PPV and its change after PLR, are given in this table.

Formula R? p-value rho
Full data set
VPPV | Y=1.25-0.86x 0.8447 0.0007 -0.917
PPV | Y=-13.7-0.28x 0.2083 0.2083 -0.383
Data set without pt 9
VPPV | Y=0.29-0.82x 0.8449 0.001 -0.905
PPV | Y=-11.09-0.197x 0.2666 0.1902 -0.405
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- Figure 4.3 was reproduced, and the result of the re-analysis leaving patient
9 out of the data set is depicted as a dashed blue line

Absolute change in VPPV after PLR (%)
Absolute change in classic PPV after PLR (%)

-30

200

Pre-PLR VPPV (%) Pre-PLR classic PPV (%)
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Length of the observation window.

The algorithm to quantify VPPV was applied successively in progressively
shorter windows, starting at the reference episode of 60 seconds with
successive reductions of 1 second until the model indicated failure to solve
the function.

PrePLR PostPLR

VPPV
cwda
B

E
?

Observation window (sec)

Figure B.3 Individual plots of the calculated VPPV in function of the length of the
observation window. (VPPV = calculated value of Ventilation induced Pulse Pressure
Ventilation (%), Observation window = the length of data strip used to develop the
model, Red vertical line= the individual minimal length of the observation window for
the algorithm to determine its coefficients)
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(2]
o

N
o

N
o

minimal length of observation window (sec)

400 600 800 1000
median RR-interval (msec)

Figure B.4: Plot of the relation between the minimal length of observation period
and the median RR-interval of each observation period. To depict the impact of heart
rate on the performance of the model, the minimal length of the observation window

(for each patient/period) was plotted against the median RR-interval of that
observation period. There is a linear relationship (r?=0.49, p = 0.001) showing that the
minimal observation period for the algorithm to calculate a value for VPPV is longer
with a slower heart rate. (Median RR-interval of an observation period in msec.
Minimal length of observation of the observation window in seconds. The linear
relation and its confidence interval are depicted as a blue line and a grey shade,
respectively)
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Further extra information can be found on Github:
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General Model

Procedure and setting of the model.

For each class of measurement methods (‘iPPV’, ‘pPPV’, ‘tandPPV’), a
regression model was built with BLUP as a predictor for the replicates. The
model used the factor method as an interaction factor both in the linear
model and to correct for heteroskedasticity:

M, (BLUP;)~N(0 + 1. BLUP;, oMy *@1m, BLUP
M, (BLUP;)~N(Bop, + Bim, BLUP;, e%omz*@1nz BLUP;
M3(BLUP]-)~N([)’OM3 + B1M33LUP]',€“°M3+“1M3BLP1')

In the code, BLUP is coded as PPVref and the measurement of a BLUP is
coded as PPV, making the follow compact model brms -code:

PPV = PPVref * method
sigma = PPVref * method

Each Bayesian model was done using a Markov Chain Monte Carlo simulation
(Hamiltonian Monte Carlo with no-U-turn sampler (NUTS)) with four chains.
All models considered a warm-up of 2,000 iterations, with sampling from a
further 8,000 iterations for each chain. All chains were required to be free of
divergent transitions. To monitor convergence, trace plots, and the Gelman—
Rubin convergence diagnostic (Rhat < 1.01) were used for all parameters.
Max_treedepth setting was adjusted to augment sampling efficiency.

Non-informative priors, using the default priors-selection of the brms
package were used for modeling. See table C.1.
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PRIOR CLASS COEFICIENT DPAR
FLAT b
FLAT b methodxPPV_2/15
FLAT b methodxPPV_3/20
FLAT b methodxPPV_4/30
FLAT b methodxPPV_5/60
FLAT b PPVref
FLAT b PPVref:methodxPPV_2/15
FLAT b PPVref:methodxPPV_3/20
FLAT b PPVref:methodxPPV_4/30
FLAT b PPVref:methodxPPV_5/60
STUDENT_T Intercept
(3,7.9, 4.9
FLAT b sigma
FLAT b methodxPPV_2/15 sigma
FLAT b methodxPPV_3/20 sigma
FLAT b methodxPPV_4/30 sigma
FLAT b methodxPPV_5/60 sigma
FLAT b PPVref sigma
FLAT b PPVref:methodxPPV_2/15 sigma
FLAT b PPVref:methodxPPV_3/20 sigma
FLAT b PPVref:methodxPPV_4/30 sigma
FLAT b PPVref:methodxPPV_5/60 sigma
STUDENT_T Intercept sigma
(3,0,2.5)

Table C.1: Priors used for modelling. A generic notation for the individual models

of the different classes is used.
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Generic Stan code:

// generated with brms 2.17.0
functions {
}
data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
int<lower=1> K_sigma; // number of population-level effects
matrix[N, K_sigma] X_sigma; // population-level design matrix
int prior_only; // should the likelihood be ignored?
}
transformed data {
intKc=K-1;
matrix[N, Kc] Xc; // centered version of X without an intercept
vector[Kc] means_X; // column means of X before centering
int Kc_sigma = K_sigma - 1;
matrix[N, Kc_sigma] Xc_sigma; // centered version of X_sigma without an intercept
vector[Kc_sigma] means_X_sigma; // column means of X_sigma before centering
for (iin 2:K) {
means_X[i - 1] = mean(X], i]);
Xc[,i-1]=X], i] - means_X[i - 1];
}
for (iin 2:K_sigma) {
means_X_sigmali - 1] = mean(X_sigmal, i]);
Xc_sigmal, i - 1] = X_sigmal, i] - means_X_sigma(i - 1];
}
}
parameters {
vector[Kc] b; // population-level effects
real Intercept; // temporary intercept for centered predictors
vector[Kc_sigma] b_sigma; // population-level effects
real Intercept_sigma; // temporary intercept for centered predictors
}
transformed parameters {
real lprior = 0; // prior contributions to the log posterior
Iprior += student_t_Ipdf{intercept | 3, 7.9, 4.9);
Iprior += student_t_Ipdf{(Intercept_sigma [ 3, 0, 2.5);
}
model {
// likelihood including constants
if (Iprior_only) {
// initialize linear predictor term
vector[N] mu = Intercept + Xc * b;
// initialize linear predictor term
vector[N] sigma = Intercept_sigma + Xc_sigma * b_sigma;
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for (nin 1:N) {
// apply the inverse link function
sigma[n] = exp(sigmal[n]);
}
target += normal_Ilpdf(Y | mu, sigma);
}
// priors including constants
target += Iprior;
}
generated quantities {
// actual population-level intercept
real b_Intercept = Intercept - dot_product(means_X, b);
// actual population-level intercept

real b_sigma_Intercept = Intercept_sigma - dot_product(means_X_sigma, b_sigma);

}
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‘Individual RC PPV’-class: iPPV-model

Results

Table C.2.1 provides the densities of all parameters (as mean, estimated error,
and the 95% credible intervals) of the model, along with the Gelman—Rubin
convergence diagnostic (Rhat) and the assessment of effective sampling
(Bulk_ESS, Tail_ESS) (ESS = effective sampling size)
Figure C.2.1 provides the density plots and trace plots of each chain for all

parameters.

Table C.2.1: Results of the Bayesian model for the iPPV-class of measurement

methods.

Family: gaussian. Links: mu = identity; sigma = log
Brms Formula:

PPV ~ PPVref * method
sigma ~ PPVref * method
Data: master_dataset_i (Number of observations: 15569)

Draws: 4 chains, each with iter = 10000; warmup = 2000; thin = 1, total post-

warmup draws = 32000
Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% Cl Rhat Bulk_ESS Tail_ESS
b_lIntercept -0.042 0.03 -0.101 0.017 1.00 11407 17182
b_sigma_Intercept -0.109 0.017 -0.142 -0.076 1.00 12741 18480
b_PPVref 1.004 0.004 0.997 1.012 1.00 13358 18840
b_methodiPPV_2 -0.02 0.043 -0.106 0.064 1.00 14769 19145
b_methodiPPV_3 -0.023 0.043 -0.108 0.062 1.00 12901 18281
b_methodiPPV_4 -0.029 0.043 -0.114 0.056 1.00 12086 17378
b_methodiPPV_5 -0.014 0.043 -0.098 0.07 1.00 14269 20353
b_PPVref:methodiPPV_2 0.003 0.006 -0.008 0.014 1.00 14198 20206
b_PPVref:methodiPPV_3 0.004 0.006 -0.007 0.015 1.00 15224 19880
b_PPVref:methodiPPV_4 0.005 0.006 -0.006 0.016 1.00 13992 19469
b_PPVref:methodiPPV_5 0.003 0.006 -0.008 0.014 1.00 20498 24911
b_sigma_PPVref 0.051 0.002 0.047 0.054 1.00 24904 25279
b_sigma_methodiPPV_2 -0.363 0.03 -0.423 -0.305 1.00 17080 19998
b_sigma_methodiPPV_3 -0.568 0.035 -0.637 -0.498 1.00 22006 21818
b_sigma_methodiPPV_4 -0.763 0.04 -0.84 -0.684 1.00 23214 21588
b_sigma_methodiPPV_5 -0.945 0.043 -1.03 -0.86 1.00 20198 25072
b_sigma_PPVref:methodiPPV_2 0.005 0.003 -0.001 0.01 1.00 24367 23989
b_sigma_PPVref:methodiPPV_3 0.002 0.003 -0.005 0.008 1.00 15983 20360
b_sigma_PPVref:methodiPPV_4 0.006 0.004 -0.001 0.014 1.00 22237 22716
b_sigma_PPVref:methodiPPV_5 0.009 0.004 0.001 0.017 1.00 22996 21294
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Visualization

40

Measured PPV (%)

BLUP - Measured PPV (%)
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Figure C.2.2: Visualization of the model split up in a (A) prediction plot, (B) bias plot and (C) precision plot for each method of the

iPPV-class.
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‘Pooled RC PPV’-class: pPPV-model

Results

Table C.3.1 provides the densities of all parameters (as mean, estimated error,
and the 95% credible intervals) of the model, along with the Gelman—Rubin
convergence diagnostic (Rhat) and the assessment of effective sampling (
Bulk_ESS, Tail_ESS) (ESS = effective sampling size)

Table C.3.1 Results from the Bayesian model for the pPPV-class of measurement methods.
Familiy: gaussian. Links: mu=identity; sigma=Ilog
Brms Formula:
PPV ~PPVref*method
Sigma ~PPVref*method
Data: master_dataset_p (Number of observatons:15569)
Draws: 4 chains, each with iter = 10000; warmup = 2000 ; thin = 1;
total post-warmup draws=32000
Population-Level Effects:

Estimate Est.Error 1-95% ¢l u-95% Cl Rhat Bulk_ESS Tail_ESS

b_Intercept | -0.043 0.030 -0.101 0.016 1.000 19804 24439

sigma_Intercept -0.109 0.017 -0.143 -0.075 1.000 24687 26029

PPVref 1.005 0.004 0.997 1.012 1.000 21122 23050

methodpPPV 2 0.639 0.056 0.529 0.747 1.000 15978 16848

methodpPPV 3 1.060 0.073 0.918 1.202 1.000 14845 17126

methodpPPV 4 1.424 0.092 1.245 1.605 1.000 27192 24531

methodpPPV 5 1.688 0.111 1.469 1.906 1.000 20595 20732
PPVref:methodpPPV 2 0.067 0.007 0.053 0.081 1.000 17444 20249
PPVref:methodpPPV_3 0.108 0.009 0.089 0.126 1.001 15932 19119
PPVref:methodpPPV 4 0.133 0.012 0.110 0.157 1.000 25672 24294
PPVref:methodpPPV_5 0.161 0.015 0.132 0.190 1.000 22139 22642
sigma_PPVref 0.051 0.002 0.047 0.054 1.000 24754 25171
sigma_methodpPPV_2 0.048 0.031 -0.012 0.110 1.000 27815 24989
sigma_methodpPPV_3 0.168 0.037 0.096 0.241 1.000 21407 20406
sigma_methodpPPV_4 0.280 0.042 0.197 0.363 1.000 22494 21460
sigma_methodpPPV_5 0.319 0.047 0.227 0.411 1.000 29432 24450
sigma_PPVref-methodpPPV 2 0.003 0.003 -0.003 0.009 1.000 27709 24764
sigma_PPVref-methodpPPV 3 0.002 0.003 -0.005 0.009 1.000 20844 20277
sigma_PPVref-methodpPPV 4 0.002 0.004 -0.006 0.010 1.000 22240 21265
sigma_PPVref-methodpPPV_5 0.005 0.004 -0.004 0.014 1.000 29194 24995
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‘Time window-based’ class: tPPV-model

Results

Table C.4.1 provides the densities of all parameters (as mean, estimated error,
and the 95% credible intervals) of the model, along with the Gelman—Rubin
convergence diagnostic (Rhat) and the assessment of effective sampling
(Bulk_ESS, Tail_ESS) (ESS = effective sampling size)

Table C.4.1: Results of the Bayesian model for the tPPV-class of measurement methods.
Family: gaussian. Links: mu = identity; sigma = log
Brms Formula:
PPV ~ PPVref * method
sigma ~ PPVref * method
Data: master_dataset_t (Number of observations:7950)
Draws: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
total post-warmup draws = 32000

Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% Cl Rhat Bulk_ESS Tail_ESS

Intercept | -0.138 0.043 -0.223 -0.053 1.00 10913 15972

sigma_Intercept | -0.432 0.028 -0.487 -0.376 1.00 17343 21450

PPVref | 0.924 0.006 0.912 0.936 1.00 10623 15427

methodtPPV_15 | -0.018 0.057 -0.130 0.091 1.00 13184 19671
methodtPPV 20 | 0.042 0.055 -0.066 0.152 1.00 13830 19605
methodtPPV_30 | 0.082 0.055 -0.026 0.191 1.00 13784 18445
methodtPPV_60 | 0.073 0.051 -0.026 0.172 1.00 11495 15090
PPVref-methodtPPV_15 | 0.045 0.008 0.030 0.060 1.00 12931 18860
PPVref-methodtPPV_20 | 0.052 0.008 0.037 0.067 1.00 12875 18671
PPVref-methodtPPV_30 | 0.063 0.008 0.048 0.078 1.00 12796 18176
PPVref-methodtPPV_60 | 0.069 0.007 0.055 0.083 1.00 11091 16185
sigma_PPVref | 0.075 0.003 0.070 0.080 1.00 16796 20990
sigma_methodtPPV_15 | -0.181 0.042 -0.264 -0.097 1.00 20211 22530
sigma_methodtPPV_20 | -0.350 0.046 -0.440 -0.259 1.00 17897 20604
sigma_methodtPPV_30 | -0.573 0.054 -0.677 -0.468 1.00 22621 21915
sigma_methodtPPV_60 | -1.232 0.066 -1.361 -1.102 1.00 21781 23387
sigma_PPVref:methodtPPV_15 | -0.014 0.004 -0.022 -0.007 1.00 19752 21949
sigma_PPVref:methodtPPV 20 | -0.018 0.004 -0.027 -0.010 1.00 16667 18513
sigma_PPVref:methodtPPV_30 | -0.015 0.005 -0.025 -0.006 1.00 22854 23669
sigma_PPVref:methodtPPV 60 | -0.011 0.006 -0.023 0.000 1.00 21126 22531
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Visualization
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Figure C.4.2: Visualization of the model split up in a (A) prediction plot, (B) bias plot and (C) precision plot for each method of the
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Imputed Model for iPPV3

Results

Table C.6.1 provides the densities of all parameters (as mean, estimated error,
and the 95% credible intervals) of the model, along with the Gelman—Rubin
convergence diagnostic (Rhat) and the assessment of effective sampling
(Bulk_ESS, Tail_ESS) (ESS = effective sampling size)

Figure C.6.1 provides the density plots and trace plots of each chain for all
parameters.

Table C.6.1. Results of the Bayesian model for the imputed iPPV_3 model.
Family: MV/(gaussian, gaussian).
Links:
mu = identity; sigma = log
mu = identity; sigma = identity
Formula:
PPV ~ mi(PPVref)
Sigma ~ mi(PPVref)
PPVref | mi() ~ 1
Data: master_dataset_iPPV3_mi (Number of observations: 2210)
Draws: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
total post-warmup draws = 32000

Population-Level Effects:

Estimate  Est.Error 1-95% u-95% Rhat Bulk_ Tail_

ESS ESS
PPV _Intercept -0.06 0.03 -0.13 -0.00 1.00 44417 24436
sigma_PPV _Intercept -0.68 0.03 -0.74 -0.62 1.00 48978 23488
PPVref Intercept 9.32 0.13 9.05 9.58 1.00 71420 23442
PPV_miPPVref 1.01 0.00 1.00 1.02 1.00 43290 24558
Sigma_PPV._miPPVref 0.05 0.00 0.05 0.06 1.00 48541 25746

Family Specific Parameters:
Estimate Est.Error 1-95%! u-95%I Rhat Bulk_ Tail_
ESS ESS

sigma_PPVref 6.32 0.09 6.14 6.51 1.00 70073 21955
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Figure C.6.1:Density plot and trace plot (of all chains ) for each parameters of the iPPV-imputed-model
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Visualization
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Figure C.6.2a: Visualization of the posterior of P(BLUP| measured iPPV3)
(imputed missing data).
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Figure C.6.2b: Visualization for the posterior of measured differences.
P(ABLUP| Ameasured iPPV;).
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Imputed Model for tPPV3

Results

Table C.7.1 provides the densities of all parameters (as mean, estimated error,
and the 95% credible intervals) of the model, along with the Gelman—Rubin
convergence diagnostic (Rhat) and the assessment of effective sampling
(Bulk_ESS, Tail_ESS) (ESS = effective sampling size)
Figure C.7.1 provides the density plots and trace plots of each chain for all

parameters.

Table C.7.1. Results of the Bayesian model for the imputed iPPV_3 model.
Family: MV/(gaussian, gaussian).

Links:

mu = identity; sigma = log

mu = identity; sigma = identity

Formula:

PPV ~ mi(PPVref)

Sigma ~ mi(PPVref)

PPVref | mi() ~ 1

Data: master_dataset_aPPV15_mi (Number of observations: 2134)
Draws: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
total post-warmup draws = 32000

Population-Level Effects:

Estimate Est.Error 1-95% u-95% Rhat Bulk_ Tail_ESS
ESS
PPV _Intercept -0.15 0.04 -0.23 -0.08 1.00 39044 25895
sigma_PPV _Intercept -0.61 0.03 -0.67 -0.55 1.00 42348 25248
PPVref Intercept 9.69 0.14 9.41 9.96 1.00 65003 24320
PPV_miPPVref 0.97 0.00 0.96 0.98 1.00 39213 27174
Sigma_PPV._miPPVref 0.06 0.00 0.06 0.07 1.00 40719 26578
Family Specific Parameters:
Estimate Est.Error 1-95% u-95% Rhat Bulk_ Tail_
ESS ESS
sigma_PPVref 6.60 0.10 6.40 6.80 1.00 74412 21343
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Figure C.7.1: Density plot and trace plot (of all chains ) for each parameters

of the tPPV-imputed-model
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Visualization
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Figure C.7.2a: Visualization of the posterior of P(BLUP| measured tPPVs).
(imputed missing data)
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‘... Closing time,
every new beginning
comes from some other
beginning’s end. ...”
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